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Abstract: The study of finite J effects for the light-cone AdS5×S5 superstring by means

of the Thermodynamic Bethe Ansatz requires an understanding of a companion 2d theory

which we call the mirror model. It is obtained from the original string model by the

double Wick rotation. The S-matrices describing the scattering of physical excitations

in the string and mirror models are related to each other by an analytic continuation.

We show that the unitarity requirement for the mirror S-matrix fixes the S-matrices of

both theories essentially uniquely. The resulting string S-matrix S(z1, z2) satisfies the

generalized unitarity condition and, up to a scalar factor, is a meromorphic function on the

elliptic curve associated to each variable z. The double Wick rotation is then accomplished

by shifting the variables z by quarter of the imaginary period of the torus. We discuss

the apparent bound states of the string and mirror models, and show that depending on

a choice of the physical region there are one, two or 2M−1 solutions of the M -particle

bound state equations sharing the same conserved charges. For very large but finite values

of J , most of these solutions, however, exhibit various signs of pathological behavior. In

particular, they might receive a finite J correction to their energy which is complex, or

the energy correction might exceed corrections arising due to finite J modifications of the

Bethe equations thus making the asymptotic Bethe ansatz inapplicable.
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1. Introduction and summary

The conjectured duality between the maximally supersymmetric Yang-Mills theory in four

dimensions and type IIB superstring in the AdS5×S5 background [1] is the subject of active

research. Integrability emerging on both sides of the gauge/string correspondence [2, 3]

proved to be an indispensable tool in matching the spectra of gauge and string theories.

Namely, it was shown that the problem of determining the spectra in the large volume

(charge) limit, can be reduced to the problem of solving a set of algebraic (Bethe) equations.

The corresponding Bethe equations are based on the knowledge of the S-matrix which

describes the scattering of world-sheet excitations of the gauge-fixed string sigma-model,

or alternatively, the excitations of a certain spin chain in the dual gauge theory [4]–[9].

Remarkably, the S-matrix is severely restricted by the requirement of invariance under

the global symmetry of the model, the centrally extended psu(2|2) ⊕ psu(2|2) superalge-

bra [9, 10]. The invariance condition fixes its matrix form almost uniquely up to an overall

phase [9, 11]. The constraints on the overall phase were derived in [12] by demanding

the S-matrix to satisfy crossing symmetry. Recently, a physically relevant solution to the

crossing relation, which interpolates between the weak (gauge) and strong (string) coupling

regimes was conjectured [13, 14], building on the previous work [15]–[18]. This solution

successfully passed a number of non-trivial tests [19]–[34].

So far the main focus of research was on determining the spectrum of string theory

in the limiting case in which at least one of the global charges carried by a string state

(and by the corresponding gauge theory operator) is large. Our ultimate goal, however, is

to understand how the energies of string states (the conformal dimensions of dual gauge

theory operators) depend on the coupling constant for finite values of all the other global

symmetry charges. Although the conjectured S-matrix [13, 14] provides an important

starting point in addressing this issue, by now there is firm evidence that the corresponding

Bethe equations [8] fail to correctly reproduce the finite-size effects, neither in string [35]

nor in gauge theory [36]. Indeed, already in the semi-classical string theory deviations from

the controllable exact spectrum arise which are exponentially small in the effective string

length playing the role of a large symmetry charge. One of the reasons behind this is that

the interactions on the world-sheet are not ultra-local, typically the scattered states are

solitons of finite size [37, 38]. Also, as is common to many field-theoretic models, vacuum

polarization effects smear bare point-like interactions and lead to exponential corrections

to the energy levels in the large-volume limit [39]. Complementary, in the spin chain

description of the dual gauge theory, the obstruction to the validity of the Bethe ansatz

comes from the wrapping effects. Hence, the Bethe ansatz for the planar AdS/CFT system

in its present form is merely of asymptotic type. Obviously, solving a quantum sigma-

model in finite volume is much harder. As an illustrative example, we mention the Sinh-

Gordon model for which the equations describing the finite-size spectrum have been recently

obtained in [40].
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Determination of finite-size effects in the context of integrable models is a wide area of

research. Basically, there are three different but related ways in which this problem could

be addressed: the thermodynamic Bethe ansatz approach (TBA) [41], nonlinear integral

equations (NLIE) [42] and functional relations for commuting transfer-matrices [43].

The aim of the present paper is to investigate the structure of the string S-matrix

which is the necessary step for constructing the TBA equations for the quantum string

sigma-model on AdS5 × S5 background. This would eventually allow one to describe the

finite-size spectrum of the corresponding model.

The TBA approach was initially developed for studying thermodynamic properties

of non-relativistic quantum mechanics in one dimension [44] and further applied to the

computation of the ground state energy in integrable relativistic field theories in finite vol-

ume [41]. The method also was later extended to account for energies of excited states [45]

(see also [46]).

Implementation of the TBA approach consists of several steps. The primary goal is to

obtain an expression for the ground state energy of a Lorentzian theory compactified on

a circle of circumference L and at zero temperature. The starting point is the Euclidean

extension of the original theory, put on a torus generated by two orthogonal circles of

circumferences L and R. The partition function of this theory can be viewed as originating

from two different Lorentzian theories: the original one, which lives on a circle of length

L at temperature T and has the Hamiltonian H, or the mirror theory which is defined

on a circle of length R = 1/T at temperature T̃ = 1/L and has the Hamiltonian H̃.

For Lorentz-invariant theories, the original and the mirror Hamiltonians are the same.

However, in general and in particular for the case of interest here, the two theories need

not be the same. Taking the thermodynamic limit R → ∞ one ends up with the mirror

theory on a line and at finite temperature, for which the exact (mirror) Bethe equations

can be written. Thus, computation of finite-size effects in the original theory translates

into the problem of solving the infinite volume mirror theory at finite temperature.

Although taking the thermodynamic limit simplifies the system, a serious complication

arises due to the fact that the mirror theory could have bound states which manifest

themselves as poles of the two-particle mirror S-matrix. Thus, the complete spectrum

would consist of particles and their bound states; the latter should be thought of as new

asymptotic particles. Having identified the spectrum, one has to determine the S-matrix

which scatters all asymptotic particles. It is this S-matrix which should be used to formulate

the system of TBA equations.

As is clear from the discussion above, the mirror theory plays a crucial role in the TBA

approach. In this paper we will analyze the mirror theory in some detail. First, we will

explain its relation to the original theory. Indeed, given that the model in question is not

Lorentz invariant, the mirror and the original Hamiltonians are not the same. However,

since the dispersion relation and the S-matrix can be deduced from the 2-point and 4-point

correlation functions on the world-sheet, and since the correlation functions in the mirror

theory are inherited from the original model by performing a double Wick rotation, it

follows that the mirror dispersion relation and the mirror S-matrix can be obtained from

the original ones by the double Wick rotation. Here we will meet an important subtlety.

– 3 –
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To explain it, we first have to recall the basic properties of the string S-matrix.

As was shown in [47], the psu(2|2) ⊕ psu(2|2)-invariant S-matrix S(p1, p2), which de-

pends on real momenta p1 and p2 of scattering particles, obeys

• the Yang-Baxter equation

S23S13S12 = S12S13S23

• the unitarity condition

S12(p1, p2)S21(p2, p1) = I

• the physical unitarity condition

S12(p1, p2)S†
12(p1, p2) = I

• the requirement of crossing symmetry

C−1
1 St1

12(p1, p2)C1S12(−p1, p2) = I ,

where C is the charge conjugation matrix.

The first three properties naturally follow from the consistency conditions of the associated

Zamolodchikov-Faddeev (ZF) algebra [48, 49], while the last one reflects the fact that the

particle-to-anti-particle transformation is an automorphism of the ZF algebra [47]. The

unitarity and physical unitarity conditions imply the following property

S21(p2, p1) = S†
12(p1, p2) .

One should bear in mind that the S-matrix is defined up to unitary equivalence only:

unitary transformations (depending on the particle momentum) of a basis of one-particle

states correspond to unitary transformations of the scattering matrix without spoiling any

of the properties listed above.

The mirror S-matrix S̃(p̃1, p̃2) is obtained from S(p1, p2) by the double Wick rotation.

The above-mentioned subtlety lies in the fact that only for a very special choice of the

one-particle basis the corresponding mirror S-matrix remains unitary. As we will show,

this problem can be naturally attributed to the properties of the double Wick rotation for

fermionic variables. Upon the basis is properly chosen to guarantee unitarity of the mirror

S-matrix, the only freedom in the matrix structure of S(p1, p2) reduces to constant, i.e.

momentum-independent, unitary transformations.1

There is another interesting explanation of the interrelation between the original theory

and its mirror. As was shown in [12], the dispersion relation between the energy and

momentum of a single particle can be naturally uniformized in terms of a complex variable

z living on a torus with real and imaginary periods equal to 2ω1 and 2ω2, respectively. Since

z plays the role of the generalized rapidity variable, it is quite natural to think about the

1Of course, there is always a freedom of multiplying the S-matrix by an overall (momentum-dependent)

phase.
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S-matrix as the function S(z1, z2), which for real values of the generalized rapidity variables

coincides with S(p1, p2). In other words, the S-matrix admits an analytic continuation to

the complex values of momenta. It appears that the unitary momentum-dependent freedom

in the matrix structure of the S-matrix gets fixed if we require the analytic continuation

to be compatible with the requirement of

• generalized unitarity

S12(z
∗
1 , z∗2)

[
S12(z1, z2)

]†
= I ,

which can be thought of as the physical unitarity condition extended to the generalized

rapidity torus. The unitarity and the generalized unitarity further imply

S21(z
∗
2 , z∗1) =

[
S12(z1, z2)

]†

In fact, the last equation is equivalent to the standard requirement of hermitian analyticity

for an S-matrix in two-dimensional relativistic quantum field theories.

Thus, the S-matrix which admits the analytic continuation to the generalized rapidity

torus compatible with the requirement of hermitian analyticity is essentially unique. Of

course, it satisfies all the other properties listed above, including crossing symmetry. As

we will show, the mirror S-matrix is obtained from S(z1, z2) considered for real values of

z1, z2 by shifting z1, z2 by quarter of the imaginary period

S̃(z1, z2) = S
(
z1 + ω2

2 , z2 + ω2
2

)
.

There is a close analogy with what happens in relativistic models. In the latter case the

physical region is defined as the strip 0 ≤ Im θ ≤ π, where θ = θ2 − θ1 is the rapidity

variable. A passage to the mirror theory corresponds to the shift θk → θk + iπ
2 , i.e. to the

shift by the quarter of imaginary period.2 Of course, for relativistic models, due to Lorentz

invariance, the S-matrix depends on the difference of rapidities and, therefore, it remains

unchanged under the double Wick rotation transformation. Also, in our present case the

notion of the physical region is not obvious and its identification requires further analysis

of the analytic properties of the string S-matrix.

Having identified the mirror S-matrix, we can investigate the question about the bound

states. We first discuss the Bethe equations for the gauge-fixed string theory where the

existence of the BPS bound states is known [50]. No non-BPS bound states exist, according

to [50]–[52]. We find out, however, that the number of solutions of the BPS bound state

equations depends on the choice of the physical region of the model, and for a given value

of the bound state momentum there could be 1, 2 or 2M−1 M -particle bound states sharing

the same set of global conserved charges. It is unclear to us whether this indicates that the

actual physical region is the one that contains only a single M -particle bound state or it

hints on a hidden symmetry of the model responsible for the degeneracy of the spectrum.

These solutions behave, however, differently for very large but finite values of L; most

of them exhibit various signs of pathological behavior. In particular, they might have

2The shift of θ by the half-period corresponds to the crossing transformation.
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complex finite L correction to the energy, or the correction would exceed the correction

due to finite L modifications of the Bethe equations thus making the asymptotic Bethe

ansatz inapplicable. In the weak coupling limit, i.e. in perturbative gauge theory, and

for small enough values of the bound state momentum only one solution reduces to the

well-known Bethe string solution of the Heisenberg spin chain. It is also the only solution

that behaves reasonably well for finite values of L. Therefore, it is tempting to identify the

physical region of the string model as the one that contains this solution only.

By analyzing the Bethe equations for the mirror theory, we show that bound states exist

and that they can be regarded as “mirror reflections” of the BPS bound states in the original

theory. No other bound states exist, in agreement with the results by [52]. Given the

knowledge of bound states, the next step would be to construct the S-matrix which describes

scattering of all asymptotic particles including the ones which correspond to bound states.

In principle, such an S-matrix can be obtained by the fusion procedure [53, 54] applied

to the “fundamental” S-matrix we advocate here. This is the bootstrap program whose

discussion we will postpone for the future.

The paper is organized as follows. The next section contains the discussion of the

double Wick rotation, the mirror dispersion relation and the mirror magnon. In section

3 we discuss the supersymmetry algebra and the construction of the mirror S-matrix. In

section 4 we analyze the double Wick rotation on the generalized rapidity torus as well as

various possible definitions for the physical region. In section 5 the properties of the string

S-matrix defined on the generalized rapidity torus are discussed. We also prove here the

unitarity of the scalar factor in the mirror theory. In section 6 we present various versions

of the Bethe equations in the original and mirror theory pointing out that the Bethe

equations based on the su(2|2) ⊕ su(2|2)-invariant string S-matrix should be modified in

the odd winding number sector since for this case the fermions of the gauge-fixed string

sigma model are anti-periodic. Sections 7 and 8 contain an analysis of the bound states

of the AdS5 × S5 gauge-fixed model and its mirror theory. Section 9 consists of several

appendices.

2. Generalities

In this section we discuss how the vacuum energy of a two-dimensional field theory on a

circle can be found by considering the Thermodynamic Bethe Ansatz for a mirror model

obtained from the field theory by a double Wick rotation. We follow the approach developed

in [41].

2.1 Double Wick rotation and mirror Hamiltonian

Consider any two-dimensional field-theoretic model defined on a circle of circumference L.

Let

H =

∫ L

0
dσH(p, x, x′) (2.1)

be the Hamiltonian of the model, where p and x are canonical momenta and coordinates.

They may also include fermions but in this section we confine ourselves to bosonic fields

– 6 –
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only. We will refer to the action corresponding to the Hamiltonian H as to the Minkowski

action, however it does not have to be relativistic invariant.

We want to compute the partition function of the model defined as follows

Z(R,L) ≡
∑

n

〈ψn|e−HR|ψn〉 =
∑

n

e−EnR , (2.2)

where |ψn〉 is the complete set of eigenstates of H. By using the standard path integral

representation [55], we get

Z(R,L) =

∫
DpDx e

R R
0

dτ
R L
0

dσ(ipẋ−H) , (2.3)

where the integration is taken over x and p periodic in both τ and σ. Formula (2.3) shows

that −
∫ R
0 dτ

∫ L
0 dσ(ipẋ−H) can be understood as the Euclidean action written in the first-

order formalism. Indeed, integrating over p in the usual first-order action
∫ R
0 dτ

∫ L
0 dσ(pẋ−

H), we get the Minkowski-type action, and the Euclidean action is obtained from it by

replacing ẋ → iẋ which is equivalent to the Wick rotation τ → −iτ .

Let us now take the Euclidean action, and replace x′ → −ix′ or, equivalently, do the

Wick rotation of the σ-coordinate σ → iσ. As a result we get the action where σ can be

considered as the new time coordinate. Let H̃ be the Hamiltonian with respect to σ

H̃ =

∫ R

0
dτ H̃(p̃, x, ẋ) , (2.4)

where p̃ are canonical momenta of the coordinates x with respect to σ.

We will refer to the model with the Hamiltonian H̃ as to the mirror theory. If the

original model is not Lorentz-invariant then the mirror Hamiltonian is not equal to the

original one, and the Hamiltonians H and H̃ describe different Minkowski theories.

The partition function of the mirror model is given by

Z̃(R,L) ≡
∑

n

〈ψ̃n|e− eHL|ψ̃n〉 =
∑

n

e−
eEnL , (2.5)

where |ψ̃n〉 is the complete set of eigenstates of H̃. Again, by using the path integral

representation, we obtain

Z̃(R,L) =

∫
Dp̃Dx e

R R
0 dτ

R L
0 dσ(iepx′− eH) . (2.6)

Finally, integrating over p̃, we get the same Euclidean action and, therefore, we conclude

that

Z̃(R,L) = Z(R,L) . (2.7)

Now, if we take the limit R → ∞, then log Z(R,L) ∼ −RE(L), where E(L) is the ground

state energy. On the other hand, log Z̃(R,L) ∼ −RLf(L), where f(L) is the bulk free

energy of the system at temperature T = 1/L with σ considered as the time variable. This

leads to the relation

E(L) = Lf(L) . (2.8)

– 7 –
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To find the free energy we can use the thermodynamic Bethe ansatz because R ≫ 1. This

requires, however, the knowledge of the S-matrix and the asymptotic Bethe equations for

the mirror system with the Hamiltonian H̃. Although the light-cone gauge-fixed string

theory on AdS5×S5 is not Lorentz invariant, H̃ 6= H, it is still natural to expect that there

is a close relation between the two systems because their Euclidean versions coincide.

A potential problem with the proof that Z̃(R,L) = Z(R,L) is that the integration over

p and p̃ produces additional measure factors which may be nontrivial. The contribution of

such a factor is however local, and one usually does not have to take it into account. We

will assume throughout the paper that this would not cause any problem.

2.2 Mirror dispersion relation

The dispersion relation in any quantum field theory can be found by analyzing the pole

structure of the corresponding two-point correlation function. Since the correlation function

can be computed in Euclidean space, both dispersion relations in the original theory with

H and in the mirror one with H̃ are obtained from the following expression

H2
E + 4g2 sin2 pE

2
+ 1 , (2.9)

which appears in the pole of the 2-point correlation function. Here and in what follows

we consider the light-cone gauge-fixed string theory on AdS5 ×S5 which has the Euclidean

dispersion relation (2.9) in the decompactification limit L ≡ P+ → ∞ [5, 6, 9, 10]. The

parameter g is the string tension, and is related to the ’t Hooft coupling λ of the dual

gauge theory as g =
√

λ
2π .

Then the dispersion relation in the original theory follows from the analytic continua-

tion (see also [39])

HE → −iH , pE → p ⇒ H2 = 1 + 4g2 sin2 p

2
, (2.10)

and the mirror one from

HE → p̃ , pE → iH̃ ⇒ H̃ = 2arcsinh

(
1

2g

√
1 + p̃2

)
. (2.11)

Comparing these formulae, we see that p and p̃ are related by the following analytic con-

tinuation

p → 2i arcsinh

(
1

2g

√
1 + p̃2

)
, H =

√
1 + 4g2 sin2 p

2
→ ip̃ . (2.12)

We note that the plane-wave type limit corresponds to taking g → ∞ with p̃ fixed, in

which case we get the standard relativistic dispersion relation

H̃pw =
1

g

√
1 + p̃2 . (2.13)

The expression above suggests that in this limit it is natural to rescale H̃ by 1/g or,

equivalently, to rescale τ̃ = iσ by g. This also indicates that the semi-classical limit in the

– 8 –
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mirror theory should correspond to g → ∞ with p̃/g fixed, so that the dispersion relation

acquires the form

H̃sc = 2arcsinh

( |p̃|
2g

)
. (2.14)

We will show in the next subsection that the mirror theory admits a one-soliton solution

whose energy exactly reproduces eq. (2.14).

In what follows we need to know how the parameters x± introduced in [5] are expressed

through p̃. By using formulae (2.12), we find

x±(p) → 1

2g

(√

1 +
4g2

1 + p̃2
∓ 1

)
(p̃ − i) (2.15)

and, as a consequence,

ix− − ix+ → 1

g
(1 + ip̃) .

Note that these relations are well-defined for real p, but one should use them with caution

for complex values of p. In section 4 we introduce a more convenient parametrization of

the physical quantities in terms of a complex rapidity variable z living on a torus [12]. In

this parametrization the analytic continuation would simply correspond to the shift of z

by the quarter of the imaginary period of the torus.

2.3 Mirror magnon

In this section we will derive the dispersion relation for the “giant magnon” in the semi-

classical mirror theory. This will provide further evidence for the validity of the proposed

dispersion relation (2.14).

Consider the classical string sigma-model on AdS5×S5 and fix the generalized uniform

light-cone gauge as in [56, 57]. The gauge choice depends continuously on a parameter a

with the range 0 ≤ a ≤ 1. The gauge-fixed Lagrangian in the generalized a-gauge can

be obtained either from the corresponding Hamiltonian [59, 57] by using the canonical

formalism or by T-dualizing the action in the direction canonically conjugate to the light-

cone momentum P+ [26]. Its explicit form in terms of the world-sheet fields is given in

appendix 9.1. To keep the discussion simple, in what follows we will restrict our analysis

to the a = 1 gauge.3

We are interested in finding a soliton solution in the mirror theory, which is obtained

from the original theory via the double Wick rotation with further exchange of the time

and spacial directions

σ̃ = −iτ , τ̃ = iσ , (2.16)

where σ, τ are the variables parametrizing the world-sheet of the original theory.

3Recall that unlike to the case of finite P+ the dispersion relation of the giant magnon in the infinite

volume limit P+ = ∞ was shown to be gauge independent [38].
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Recall that the giant magnon can be thought of as a solution of the light-cone gauge-

fixed string sigma-model described by a solitonic profile y ≡ y(σ − vτ), where y is one of

the fields parametrizing the five-sphere and v is the velocity of the soliton.4 In the infinite

P+ limit this soliton exhibits the dispersion relation (2.10), where p coincides, in fact, with

the total world-sheet momentum pws carried by the soliton. Owing to the same form of

the dispersion relation in the dual gauge theory, this gives a reason to call this soliton a

“giant magnon” [37]. For our further discussion it is important to realize that if, instead

of taking the field y from the five-sphere, we would make a solitonic ansatz z ≡ z(σ − vτ),

where z is one of the fields parametrizing AdS5, we would find no solutions exhibiting the

dispersion (2.10). As we will now show, in the mirror theory the situation is reversed:

this time the giant magnon propagates in the AdS part, while there is no soliton solution

associated to the five-sphere.

Take the string Lagrangian (A.1) in the gauge a = 1 and put all the fields to zero

except a single excitation z from AdS5. Upon making the double Wick rotation (2.16), the

corresponding mirror action can be written as follows

S = g

∫ r

−r
dσ̃dτ̃

(
−1 +

√
1 + z2 − z′2 + (1 + z2)ż2

1 + z2

)
≡

∫ r

−r
dσ̃dτ̃ L . (2.17)

Here r is an integration bound for σ̃ and ż ≡ ∂τ̃z , z′ ≡ ∂σ̃z. Although our goal is to identify

the mirror magnon configuration in the decompactification limit, i.e. when r → ∞, for the

moment we prefer to keep r finite.

To construct a one-soliton solution of the equations of motions corresponding to the

action (2.17), we make the following ansatz

z = z(σ̃ − vτ̃ ) .

Our further discussion follows closely [38]. Plugging the ansatz into (2.17), we obtain the

reduced Lagrangian, Lred = Lred(z, z′), which describes a one-particle mechanical system

with σ̃ treated as a time variable. Introducing the canonical momentum π conjugate to z,

we construct the corresponding reduced Hamiltonian

Hred = πz′ − Lred ,

which is a conserved quantity with respect to time σ̃. Fixing Hred = 1 − ω, where ω is a

constant, we get the following equation to determine the solitonic profile

(z′)2 =
1 + z2 − 1

ω2

1 − v2 − v2z2
. (2.18)

The minimal value of z corresponds to the point where the derivative of z vanishes, while

the maximum value is achieved at the point where the derivative diverges

zmin =

√
1

ω2
− 1 , zmax =

√
1

v2
− 1 , v < ω < 1 .

4See [38] and appendix 9.1 for more details.
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The range of σ̃ is determined from the equation

r =

∫ r

0
dσ̃ =

∫ zmax

zmin

dz

|z′| =
√

1 − v2 E
(
arcsin(z

√
ω2/(1 − ω2)), η

) ∣∣∣∣
zmax

zmin

,

where we have introduced η = v2

ω2
1−ω2

1−v2 . Here E stands for the elliptic integral of the second

kind. We see that the range of σ tends to infinity when ω → 1. Thus, ω → 1 corresponds

to taking the decompactification limit.

The density of the world-sheet Hamiltonian is given by

H̃ = pzż −L ,

where pz = ∂L
∂ż is the momentum conjugate to z with respect to time τ̃ . For our solution

in the limiting case ω = 1 we find

pz = − v|z|√
1 − v2(1 + z2)

.

The energy of the soliton is then

H̃ = g

∫ ∞

−∞
dσ H̃ = 2g

∫ zmax

zmin

dz

|z′| H̃ = 2g arcsinh

√
1 − v2

|v| .

To find the dispersion relation, we also need to compute the world-sheet momentum

pws, the latter coincides with the momentum p̃ of the mirror magnon considered as a point

particle. It is given by

p̃ = pws = −
∫ ∞

−∞
dσ pzz

′ = 2

∫ zmax

zmin=0
dz|pz| = 2

√
1 − v2

|v| .

Finally, eliminating v from the expressions for H̃ and p̃ we find the following dispersion

relation

H̃ = 2g arcsinh
|p̃|
2

.

To consider the semi-classical limit g → ∞, one has to rescale the time as τ̃ → τ̃ /g so that

the energy H̃ → gH̃ will be naturally measured in units of 1/g. Under this rescaling the

momentum p̃ scales as well, so that the dispersion relation takes the form

H̃ = 2arcsinh
|p̃|
2g

, (2.19)

which is precisely the previously announced expression (2.14) for the energy of the mirror

magnon.
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3. Mirror S-matrix and supersymmetry algebra

The S-matrix in field theory can be obtained from four-point correlation functions by using

the LSZ reduction formula. Since the correlation functions can be computed by means of

the Wick rotation, it is natural to expect that the mirror S-matrix is related to the original

one by the same analytic continuation

S̃(p̃1, p̃2) = S(p1, p2) , (3.1)

where we replace pi in the original S-matrix by p̃i by using formulas (2.12). Just as the

original S-matrix, the resulting mirror S-matrix should satisfy the Yang-Baxter equation,

unitarity, physical unitarity, and crossing relations for real p̃k.

On the other hand, the original S-matrix is su(2|2) ⊕ su(2|2) invariant and the states

of the light-cone gauge-fixed AdS5 × S5 string theory carry unitary representations of the

symmetry algebra su(2|2) ⊕ su(2|2). Therefore, if the relation (3.1) is correct then the

mirror S-matrix should possess the same symmetry, and the states of the mirror theory

also should carry unitary representations of su(2|2) ⊕ su(2|2). This indicates that there

should exist a way to implement the double Wick rotation on the symmetry algebra level,

and that is what we discuss in this section.

3.1 Double Wick rotation for fermions

It is obvious that the double Wick rotation preserves the bosonic symmetry SU(2)4. To

understand what happens with the supersymmetry generators it is instructive to apply

the double Wick rotation to fermions. We consider the quadratic part of the light-cone

gauge-fixed Green-Schwarz action depending on the fermions η in the form given in [57]

L = iη†aη̇a −
1

2

(
ηaη

′
5−a − η†aη

′†
5−a

)
− η†aηa = iη†aη̇a −H . (3.2)

Here, a = 1, 2, 3, 4, and we set κ = 1 and rescale σ in the action from [57] so that λ̃

disappears.

Computing again the partition function of the model and using the path integral

representation, we get

Z(R,L) =

∫
Dη†Dηe

R R
0 dτ

R L
0 dσ(−η†

a η̇a−H) . (3.3)

We note that fermionic variables here are anti-periodic in the time direction:

η(τ + R) = −η(τ).

Would fermions be periodic in the time direction, the corresponding path integral would

coincide with Witten’s index Tr(−1)F e−HR, where F is the fermion number [58]. Since

in the mirror model τ plays the role of the spatial direction, the mirror fermions are

always anti-periodic in the spacial direction of the mirror model. On the other hand, the

periodicity condition in the time direction of the mirror model coincides with a fermion
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periodicity condition in the spacial direction of the original model. In particular, if the

fermions of the original model are periodic then the partition function of the original model

is equal to the Witten’s index of the mirror model.

After the first Wick rotation the Lagrangian takes the form

L = −η†aη̇a −
1

2

(
ηaη

′
5−a − η†aη

′†
5−a

)
− η†aηa . (3.4)

Note that the fermions in this Euclidean action are not anymore hermitian conjugate to

each other.

Let us now perform the following change of the fermionic variables

ηa =
i√
2

(
ψ†

5−a − ψa

)
, η†a =

i√
2

(
ψ†

a + ψ5−a

)
. (3.5)

Computing (3.4), we get

L = −ψ†
aψ

′
a −

1

2

(
ψaψ̇5−a − ψ†

aψ̇
†
5−a

)
− ψ†

aψa . (3.6)

It is the same action as (3.4) after the interchange τ ↔ σ and ψ → η, and this shows that

the double Wick rotation should be accompanied by the change of variables (3.5). Note,

that in terms of ψ’s the supersymmetry algebra has the standard form with the usual

unitarity condition. Thus, we expect that the supersymmetry generators will be linear

combinations of the original ones. One may assume that in the interacting theory (beyond

the quadratic level) one would take the same linear combinations.

To summarize, the consideration above seems to indicate that the symmetry algebra

of the mirror theory should correspond to a different real slice of the complexified su(2|2)⊕
su(2|2) algebra. Moreover, one might expect that the unitary representation of the AdS5×
S5 string model could be chosen in such a way that its analytic continuation by means of

formulae (2.12) would produce a unitary representation of the mirror model.

3.2 Changing the basis of supersymmetry generators

Let us recall that the centrally extended su(2|2) algebra consists of the bosonic rotation

generators La
b , Rα

β, the supersymmetry generators Qα
a, Q†

a
α, and three central elements

H, C and C†. The algebra relations are

[
La

b,Jc

]
= δb

cJa −
1

2
δb
aJc ,

[
Rα

β,Jγ

]
= δβ

γ Jα − 1

2
δβ
αJγ ,

[
La

b,Jc
]

= −δc
aJ

b +
1

2
δb
aJ

c ,
[
Rα

β,Jγ
]

= −δγ
αJβ +

1

2
δβ
αJγ ,

{Qα
a,Q†

b
β} = δa

b Rα
β + δβ

αLb
a +

1

2
δa
b δβ

αH ,

{Qα
a,Qβ

b} = ǫαβǫab C , {Q†
a
α,Q†

b
β} = ǫabǫ

αβ C† . (3.7)

Here in the first two lines we indicate how the indices c and γ of any Lie algebra generator

transform under the action of La
b and Rα

β. For the AdS5×S5 string model the supersym-

metry generators Qα
a and Q†

a
α, and the central elements C and C† are hermitian conjugate
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to each other: (Qα
a)† = Q†

a
α. The central element H is hermitian and is identified with

the world-sheet light-cone Hamiltonian. It was shown in [10] that the central elements C

and C† are expressed through the world-sheet momentum P as follows

C =
i

2
g (eiP − 1)e2iξ , C† = − i

2
g (e−iP − 1)e−2iξ , g =

√
λ

2π
. (3.8)

The phase ξ is an arbitrary function of the central elements, and reflects the obvious U(1)

automorphism of the algebra (3.7): Q → eiξQ , C → e2iξC. In our previous paper [47]

we fixed the phase ξ to be zero to match the gauge theory spin chain convention [9] and

to simplify the comparison with the explicit string theory computation of the S-matrix

performed in [26]. As we will see in a moment, if we want to implement the double Wick

rotation under which P → iH̃ , H → iP̃ on the algebra level then we should choose

ξ = −P/4. This choice makes the central elements C and C† to be hermitian and equal

to each other5

C = C† = −g sin
P

2
. (3.9)

As we discussed above, the symmetry algebra of the mirror theory should correspond

to a different real slice of the complexified su(2|2) ⊕ su(2|2) algebra. This means that

we should give up the hermiticity condition for the algebra generators and consider a

linear transformation of the generators which is an automorphism of the complexified

su(2|2) ⊕ su(2|2) algebra. The transformation (3.5) suggests to consider the following

change of the supersymmetry generators which manifestly preserves the bosonic SU(2)4

symmetry

Q̃α
a =

1√
2

(
Qα

a − i ǫac Q†
c
γ ǫγα

)
, Q̃†

a
α =

1√
2

(
Q†

a
α − i ǫαβ Qβ

b ǫba

)
. (3.10)

Then, by using the commutation relations (3.7), we find

{Q̃α
a, Q̃†

b
β} = δa

b Rα
β + δβ

αLb
a +

i

2
δa
b δβ

α (C + C†) , (3.11)

{Q̃α
a, Q̃β

b} = ǫαβǫab 1

2
(C − C† + iH) ,

{Q̃†
a
α, Q̃†

b
β} = ǫabǫ

αβ 1

2
(C† −C + iH) .

Now we see that if we want to interpret the change of the supersymmetry generators as a

result of the double Wick rotation then we should choose the central elements C ,C† to be

of the form (3.9) because with this choice the algebra relations (3.11) take the form

{Q̃α
a, Q̃†

b
β} = δa

b Rα
β + δβ

αLb
a − 1

2
δa
b δβ

α 2ig sin
P

2
,

{Q̃α
a, Q̃β

b} = ǫαβǫab i

2
H ,

{Q̃†
a
α, Q̃†

b
β} = ǫabǫ

αβ i

2
H ,

(3.12)

5A possibility of this choice was noticed in [10].
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and performing the analytic continuation

P → iH̃ , H → iP̃ ,

we obtain the mirror algebra

{Q̃α
a, Q̃†

b
β} = δa

b Rα
β + δβ

αLb
a + g δa

b δβ
α sinh

H̃

2
,

{Q̃α
a, Q̃β

b} = −ǫαβǫab P̃

2
,

{Q̃†
a
α, Q̃†

b
β} = −ǫabǫ

αβ P̃

2
.

(3.13)

Note that after the analytic continuation has been done we can impose on the new super-

symmetry generators Q̃ and new central elements H̃ , P̃ the same hermiticity condition as

was assumed for the original generators. It is also clear that the algebra (3.13) implies the

mirror dispersion relation (2.11).

3.3 Mirror S-matrix

The symmetric choice of the central charges (3.9) differs from the one we made in [47]. The

S-matrix corresponding to the symmetric choice (3.9) coincides, however, with the string

S-matrix in [47]. Indeed, this choice simply corresponds to multiplication of Q and Q† by

e−iP/4 and eiP/4, respectively, which apparently does not change the invariance condition

for the S-matrix. On the other hand, the string S-matrix also depends on the parameters

η’s which reflect the freedom in the choice of a basis of two-particle states. This freedom

was partially fixed in [47] by requiring the string S-matrix to satisfy the standard Yang-

Baxter equation. This still allows one to change the basis of one-particle states, or, in other

words to change the basis of the fundamental representation of su(2|2). We will see that

the requirement that the representation remains unitary after the analytic continuation

fixes the parameters η’s basically uniquely.

To this end, we compute the action of the generators Q̃ and Q̃† on the fundamental

representation of su(2|2), see [9, 11, 47] for details. Starting with

Qα
a|eb〉 = a δa

b |eα〉 , Qα
a|eβ〉 = b ǫαβǫab|eb〉 , (3.14)

Q†
a
α|eβ〉 = d δα

β |ea〉 , Q†
a
α|eb〉 = c ǫabǫ

αβ |eβ〉

we get

Q̃α
a|eb〉 = ã δa

b |eα〉 , Q̃α
a|eβ〉 = b̃ ǫαβǫab|eb〉 , (3.15)

Q̃†
a
α|eβ〉 = d̃ δα

β |ea〉 , Q̃†
a
α|eb〉 = c̃ ǫabǫ

αβ |eβ〉 ,

where

ã =
1√
2
(a + ic) , b̃ =

1√
2
(b + id) , c̃ =

1√
2
(c + ia) , d̃ =

1√
2
(d + ib) . (3.16)
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and Q̃α
a, Q̃†

a
α are defined by eqs. (3.10). The unitarity of the representation after the

analytic continuation requires

(c + ia) = b∗ − id∗ . (3.17)

The parameters of the original unitary representation before the analytic continuation are

given by

a =

√
igx− − igx+

2
ei(ξ+ϕ) , b = − 1

x−

√
igx− − igx+

2
ei(ξ−ϕ) ,

d =

√
igx− − igx+

2
e−i(ξ+ϕ) , c = − 1

x+

√
igx− − igx+

2
e−i(ξ−ϕ) ,

(3.18)

where ξ ∼ p and ϕ ∼ p are real, and the parameters x± satisfy the following complex

conjugation rule

(x+)∗ = x− . (3.19)

After the analytic continuation, ξ , ϕ and p become imaginary (so that p̃ is real) and

(x+)∗ =
1

x− . (3.20)

Taking this into account and computing (3.17), we find that the analytically continued

representation is unitary for any choice of ξ if

e2iϕ =

√
x+

x− = e
i
2
p . (3.21)

This means that the S-matrix which is unitary for real p and real p̃ is obtained from the

string S-matrix, see eq. (8.7) in [47], by choosing

η1 = η(p1)e
i
2
p2 , η2 = η(p2) , η̃1 = η(p1) , η̃2 = η(p2)e

i
2
p1 , (3.22)

where we have introduced

η(p) = e
i
4
p
√

ix−(p) − ix+(p). (3.23)

Up to a scalar factor the S-matrix reads as [47]

S(p1, p2) =
x−

2 − x+
1

x+
2 − x−

1

η1η2

η̃1η̃2

(
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

)

+
(x−

1 −x+
1 )(x−

2 −x+
2 )(x−

2 +x+
1 )

(x−
1 −x+

2 )(x−
1 x−

2 −x+
1 x+

2 )

η1η2

η̃1η̃2

(
E1

1⊗E2
2 +E2

2 ⊗ E1
1−E2

1 ⊗ E1
2−E1

2 ⊗ E2
1

)

−
(

E3
3 ⊗ E3

3 +E4
4 ⊗ E4

4 + E3
3 ⊗ E4

4 + E4
4 ⊗ E3

3

)

+
(x−

1 −x+
1 )(x−

2 − x+
2 )(x−

1 + x+
2 )

(x−
1 − x+

2 )(x−
1 x−

2 −x+
1 x+

2 )

(
E3

3 ⊗ E4
4 + E4

4 ⊗ E3
3 − E4

3 ⊗ E3
4 − E3

4⊗E4
3

)

+
x−

2 − x−
1

x+
2 − x−

1

η1

η̃1

(
E1

1 ⊗ E3
3 + E1

1 ⊗ E4
4 + E2

2 ⊗ E3
3 + E2

2 ⊗ E4
4

)
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+
x+

1 − x+
2

x−
1 − x+

2

η2

η̃2

(
E3

3 ⊗ E1
1 + E4

4 ⊗ E1
1 + E3

3 ⊗ E2
2 + E4

4 ⊗ E2
2

)

+i
(x−

1 −x+
1 )(x−

2 −x+
2 )(x+

1 −x+
2 )

(x−
1 −x+

2 )(1−x−
1 x−

2 )η̃1η̃2

(
E4

1 ⊗ E3
2 + E3

2 ⊗ E4
1 − E4

2 ⊗ E3
1 − E3

1 ⊗ E4
2

)

+i
x−

1 x−
2 (x+

1 −x+
2 )η1η2

x+
1 x+

2 (x−
1 −x+

2 )(1−x−
1 x−

2 )

(
E2

3 ⊗ E1
4 + E1

4 ⊗ E2
3 − E2

4 ⊗ E1
3 − E1

3 ⊗ E2
4

)

+
x+

1 − x−
1

x−
1 − x+

2

η2

η̃1

(
E3

1 ⊗ E1
3 + E4

1 ⊗ E1
4 + E3

2 ⊗ E2
3 + E4

2 ⊗ E2
4

)

+
x+

2 − x−
2

x−
1 − x+

2

η1

η̃2

(
E1

3 ⊗ E3
1 + E1

4 ⊗ E4
1 + E2

3 ⊗ E3
2 + E2

4 ⊗ E4
2

)
, (3.24)

where Ej
i with i, j = 1, . . . , 4 are the standard 4× 4 matrix unities, see appendix A of [47]

for notations.

With the choice (3.22) the S-matrix (3.24) satisfies the Yang-Baxter equation and

it is unitary for real p’s. The analytically continued S-matrix S̃(p̃1, p̃2) is then obtained

from (3.24) by simply substituting

p → 2i arcsinh
1

2g

√
1 + p̃2 , (3.25)

c.f. section 2.2. One can verify that this matrix is also unitary for real p̃’s:

S̃(p̃1, p̃2)S̃
†(p̃1, p̃2) = I . (3.26)

The only subtlety here is that the string S-matrix also depends on a scalar factor,

which has been omitted so far. Thus, one should separately check that this factor remains

unitary after the analytic continuation. This will be discussed in section 5.2.

An exact relation between the S-matrix, SAFZ, found in [47] and the S-matrix (3.24)

is given by the following transformation6

S(p1, p2) = G1(p1)G2(p2)S
AFZ(p1, p2)G1(p1)

−1G2(p2)
−1 ,

where G(p) = diag(1, 1, ei p
4 , ei p

4 ). It is amusing to note that a similar transformation has

been recently introduced in [60], but with a very different motivation. Namely, as was

shown in [60], the graded version of S(p1, p2) coincides with the Shastry R-matrix [61] for

the one-dimensional Hubbard model [62]–[64]. In section 4 we will give another interest-

ing interpretation to our choice (3.22) which is based on the requirement of generalized

unitarity. We will also show there that this choice of η’s makes the S-matrix (3.24) and,

therefore, the Shastry R-matrix a meromorphic function on the z-torus.

To summarize, in order to have a unified description of the symmetry algebra of the

AdS5 ×S5 light-cone gauge-fixed string theory and its mirror sigma-model we should make

6The finite-size correction to the dispersion relation found in [32] involves the coefficients a1, a2 and a6

of SAFZ (see [47] for notation) which are unaffected by this transformation.
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the symmetric choice of the central charges (3.9), and choose the fundamental representa-

tion of the centrally-extended su(2|2) with the parameters a, b, c, d given by

a = d =

√
igx− − igx+

2
=

√
H + 1

2
,

b = c = −
√

ig

2x+
− ig

2x− = −
√

H − 1

2
.

(3.27)

Taking into account (3.16), (3.19) and (3.20), it is easy to check that both the original and

the mirror (analytically-continued) representations are unitary with respect to their own

reality conditions. Let us stress that the parameters a, b, c, d have the same dependence

on x± in the original and mirror theories. We simply regard x± as functions of p in the

original model, and as functions of p̃ in the mirror one.

3.4 Hopf algebra structure

Formulas (3.27) define how the algebra generators of the original and mirror theories act

on one-particle states of the theory. We also need to know their action on an arbitrary

multi-particle state. The simplest way to have a unified description of their action is to use

the Hopf algebra structure of the unitary graded associative algebra A generated by the

even rotation generators La
b , Rα

β, the odd supersymmetry generators Qα
a, Q†

a
α and two

central elements H and P subject to the algebra relations (3.7) with the central elements C

and C† expressed through the world-sheet momentum P by the formula (3.9). We will be

using the Hopf algebra introduced in [47] which is basically equivalent to the Hopf algebras

discussed in [65], see also [66] for further discussion of algebraic properties of the centrally

extended su(2|2) algebra.

Let us recall that the unit, ǫ : A → C, is defined by

ǫ(id) = 1 , ǫ(J) = 0 , ǫ(Q) = 0 , ǫ(Q†) = 0 , (3.28)

and the co-product is given by the following formulas7

∆(J) = J⊗ id + id ⊗ J ,

∆(Qα
a) = Qα

a ⊗ eiP/4 + e−iP/4 ⊗ Qα
a , (3.29)

∆(Q†
a
α) = Q†

a
α ⊗ e−iP/4 + eiP/4 ⊗ Q†

a
α ,

where J is any even generator. Here we use the graded tensor product, that is for any

algebra elements a, b, c, d

(a ⊗ b)(c ⊗ d) = (−1)ǫ(b)ǫ(c)(ac ⊗ bd),

where ǫ(a) = 0 if a is an even element, and ǫ(a) = −1 if a is an odd element of the algebra

A.

7To derive these expressions from the ones given in [47] one should rescale the supersymmetry generators

in [47] by e±iP/4.
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It is interesting to note that the antipode S is trivial for any algebra element, that is

S(J) = −J , S(Q) = −Q , S(Q†) = −Q† . (3.30)

This action of the antipode arises for the symmetric choice (3.9) of the central elements C

and C† only.

The co-product is obviously compatible with the hermiticity conditions one imposes

on the algebra generators in the AdS5 × S5 string theory, and this ensures that the tensor

product of two unitary representations is unitary. To check if the co-product is also com-

patible with the hermiticity conditions one imposes on the algebra generators of the mirror

model we compute the co-product action on the supersymmetry generators Q̃ , Q̃†

∆(Q̃α
a) = Q̃α

a ⊗ cosh

(
H̃

4

)
+ cosh

(
H̃

4

)
⊗ Q̃α

a

+iǫadQ̃†
d
δǫδα ⊗ sinh

(
H̃

4

)
− i sinh

(
H̃

4

)
⊗ ǫadQ̃†

d
δǫδα , (3.31)

∆(Q̃†
a
α) = Q̃†

a
α ⊗ cosh

(
H̃

4

)
+ cosh

(
H̃

4

)
⊗ Q̃†

a
α

−iǫαδQ̃δ
dǫda ⊗ sinh

(
H̃

4

)
+ i sinh

(
H̃

4

)
⊗ ǫαδQ̃δ

dǫda .

Since in the mirror theory H̃ is hermitian, the co-product is also compatible with the

hermiticity conditions of the mirror theory. This guarantees that an su(2|2)-invariant S-

matrix can be always chosen to be unitary.

The co-product (3.31) can be used to find the commutation relations of the supersym-

metry generators with the Zamolodchikov-Faddeev (ZF) operators A(p̃) and A†(p̃) which

create asymptotic states of the mirror model. The relations can be then used to deter-

mine the antiparticle representation, and to derive the crossing relation following the steps

in [47]. A simple computation gives

Q̃α
aA†(p̃) = A†(p̃)Qα

a cosh

(
H̃

4

)
+ cosh

(
H̃

4

)
A†(p̃)ΣQ̃α

a (3.32)

+iA†(p̃)
(
ǫadQd

δǫδα

)
sinh

(
H̃

4

)
− iA†(p̃) sinh

(
H̃

4

)
Σ

(
ǫadQ̃†

d
δǫδα

)
,

Q̃†
a
αA†(p̃) = A†(p̃)Qa

α cosh

(
H̃

4

)
+ cosh

(
H̃

4

)
A†(p̃)ΣQ̃†

a
α (3.33)

−iA†(p̃)
(
ǫαδQδ

dǫda

)
sinh

(
H̃

4

)
+ i sinh

(
H̃

4

)
A†(p̃)Σ

(
ǫαδQ̃δ

dǫda

)
,

where Qα
a and Qa

α are the matrices of the symmetry algebra structure constants corre-

sponding to the fundamental representation (3.27) and Σ = diag(1, 1,−1,−1).

As was already noted, the unitarity of the mirror S-matrix can be, however, broken

by a scalar factor. In section 5 we show that the physical unitarity of the mirror S-matrix

(the scalar factor) follows from the crossing relations.
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4. Double Wick rotation and the rapidity torus

4.1 The rapidity torus

The universal cover of the parameter space describing the fundamental representation of

the centrally extended su(2|2) algebra is an elliptic curve [12]. Indeed, the dispersion

formula

H2 − 4g2 sin2 p

2
= 1 , (4.1)

which originates from the relation between the central charges of the fundamental repre-

sentation, can be naturally uniformized in terms of Jacobi elliptic functions

p = 2am z , sin
p

2
= sn(z, k) , H = dn(z, k) , (4.2)

where we introduced the elliptic modulus8 k = −4g2 = − λ
π2 < 0. The corresponding

elliptic curve (the torus) has two periods 2ω1 and 2ω2, the first one is real and the second

one is imaginary

2ω1 = 4K(k) , 2ω2 = 4iK(1 − k) − 4K(k) ,

where K(k) stands for the complete elliptic integral of the first kind. The dispersion relation

is obviously invariant under the shifts of z by 2ω1 and 2ω2. The torus parametrized by

the complex variable z is an analog of the rapidity plane in two-dimensional relativistic

models.

In this parametrization the real z-axis can be called the physical one for the original

string theory, because for real values of z the energy is positive and the momentum is real

due to

1 ≤ dn(z, k) ≤
√

k′ , z ∈ R ,

where k′ ≡ 1 − k is the complementary modulus.

We further note that the representation parameters x±, which are subject to the fol-

lowing constraint

x+ +
1

x+
− x− − 1

x− =
2i

g
, (4.3)

are expressed in terms of Jacobi elliptic functions as

x± =
1

2g

(
cn z

sn z
± i

)
(1 + dn z) . (4.4)

This form of x± follows from the requirement that for real values of z the absolute values

of x± are greater than unity: |x±| > 1 if z ∈ R. Note also that for real values of z we have

Im(x+) > 0 and Im(x−) < 0 .

8Our convention for the elliptic modulus is the same as accepted in the Mathematica program, e.g.,

sn(z, k) = JacobiSN[z, k]. Since the modulus is kept the same throughout the paper we will often indicate

only the z-dependence of Jacobi elliptic functions.
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Since both the dispersion relation and the parameters x± are periodic with the period

ω1, the range of the variable Re z can be restricted to the interval from −ω1/2 to ω1/2

which corresponds to −π ≤ p ≤ π.

Postponing an extensive discussion of the bound states till section 7, we note here that

the latter problem requires consideration of complex values of particle momenta. According

to eq. (4.2), a rectangle −ω1/2 ≤ Re(z) ≤ ω1/2 ; −ω2/2i ≤ Im(z) ≤ ω2/2i is mapped one-

to-one onto the complex p-plane. By this reason, it is tempting to call this rectangle by

the physical region in the complex z-plane,9 and, therefore, to restrict the allowed values of

the z-coordinates of the particles forming a bound state by this region. An advantage of

adopting such a choice is that all the bound states would have positive energy. We will see,

however, that this is not the only option, and there are other two regions in the complex

z-plane which could equally deserve the name “physical”. As it will become clear later on,

counting the degeneracy of the bound states drastically depends on the choice of a physical

region.

Each solution of eq. (4.3) corresponds to a point of the half-torus, i.e. of the rectangle10

−ω1/2 ≤ Re(z) ≤ ω1/2 ; −3ω2/4i ≤ Im(z) ≤ 5ω2/4i. In what follows we will be loosely

referring to this rectangle as the torus. The torus covers the complex p-plane twice. Since

the space of solutions of eq. (4.3) is mapped one-to-one on the torus, the latter could

be also chosen as the physical region. Such a choice is however problematic because half

of all the states would have negative energy, i.e. the region would contain both particles

and anti-particles, as well as bound states and anti-bound states. We point out, however,

that there exist positive energy solutions of the bound state equations with some of the

particles falling outside of the rectangle −ω1/2 ≤ Re(z) ≤ ω1/2 ; −ω2/2i ≤ Im(z) ≤ ω2/2i

that covers the complex p-plane once.

Constraint (4.3) implies that if a pair (x+, x−) satisfies it then (1/x+ , x−), (x+ , 1/x−)

and (1/x+ , 1/x−) also do. Each of these four pairs corresponds to a different point on the

torus. Taking into account that for any complex number w if |w| > 1 then |1/w| < 1, and

if Im(w) > 0 then Im(1/w) < 0, one can divide the torus into four non-intersecting regions

in the following two natural ways, see figure 1:

• {|x±| > 1}, {|x±| < 1}, {|x+| < 1 , |x−| > 1} and {|x+| > 1 , |x−| < 1}; the division

is done by the curves |x±| = 1.

• {Im(x±) > 0}, {Im(x±) < 0}, {Im(x+) > 0 , Im(x−) < 0} and {Im(x+) <

0 , Im(x−) > 0}; the division is done by the curves Im(x±) = 0.

The shape of the regions depends on the value of the coupling constant g, see figure 2.

Quite remarkably, in the strong coupling limit g → ∞ two divisions of the torus produced

by the red (|x±| = 1) and green (Im(x±) = 0) curves become related to each other through

a global shift by ω2/2.

9In relativistic field theories treated in terms of the rapidity θ = θ2 − θ1, the physical region is defined

as a strip 0 < Im θ < π and it incorporates the bound states. Correspondingly, the physical region of

an individual particle is Im θ ∈ (−π/2, π/2) and it covers the complex p-plane (with a cut) through the

relation p = sinh θ.
10We made slightly asymmetric choice for Im(z) to achieve better visual clarity.
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Figure 1: On the left figure the torus is divided by the curves |x+| = 1 and |x−| = 1 into four

non-intersecting regions. The middle figure represents the torus divided by the curves Im(x+) = 1

and Im(x−) = 1, also in four regions. The right figure contains all the curves of interest.

There are eight special points on the torus where the curves |x±| = 1 intersect with the

curves Im(x±) = 0, see figure 1. These points are z = ±1
4ω1 + 2n+1

4 ω2 , n = −2,−1, 0, 1.

It is known [18] that these points are the branch points of the one-loop correction [16] to

the dressing phase. It is unclear, however, if they remain the branch points of the exact

dressing phase. One could try to use the integral representation [52] of the BES dressing

phase [14] to understand this issue. In fact, all currently available representations for the

dressing phase are defined for |x±| ≥ 1, and this is another reason to figure out the location

of the curves |x±| = 1 on the z-torus.

Both divisions play an important role in the analysis of the bound states of string and

mirror theories. To understand the meaning of the equations |x±| = 1 and Im(x±) = 0, it

is convenient to use another parameter u which is similar to the rapidity parameter of the

Heisenberg spin chain. In terms of x± it is defined as follows

u = x+ +
1

x+
− i

g
= x− +

1

x− +
i

g
. (4.5)

By using eqs. (4.5) and (4.4), one can express the rapidity u as a meromorphic function on

the torus

u =
cn z dn z

g sn z
. (4.6)

It is not difficult to check that the eight special points on the torus are mapped onto the

four points on the u-plane with coordinates u = ±2 ± i
g , while the points z = ±ω1/2 are

mapped to u = 0, and the points z = ±ω1/2 + ω2/2 ± i0 are mapped to u = ±∞ ± i∞.
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Figure 2: Divisions of the torus by the curves |x±| = 1 (upper figures) and by the curves Imx± = 0

(lower figures) for g = 1/2, g = 1 and g = 50. The red curves are |x−| = 1, and the pink ones are

|x+| = 1. The coordinates x and y are the rescaled real and imaginary parts of z: x = Re( 2

ω1

z),

y = Re( 4

ω2

z). In the limit g → ∞ the curves |x±| = 1 and Imx± = 0 are related by the shift

z → z + ω2

2
.

A special role of the points u = ±2 ± i
g can be also understood by expressing x± in

terms of u

x+ =
1

2

(
u +

i

g
±

√(
u − 2 +

i

g

)(
u + 2 +

i

g

))
,

x− =
1

2

(
u − i

g
±

√(
u − 2 − i

g

)(
u + 2 − i

g

))
.

(4.7)

Thus, on the u-plane there are four branch points with coordinates u = ±2 ± i
g corre-
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Figure 3: On the left figure the upper and lower curves correspond to |x+| = 1+0 and |x−| = 1+0,

respectively. The map z → u(z) folds each of these curves onto the corresponding cut on the u-plane.

sponding to x± = ±1 and Im(x±) = 0. Therefore, we can naturally choose the cuts either

connecting the points −2± i
g and 2± i

g , or going from ±∞ to ±2± i
g along the horizontal

lines. Let us determine what values of x± correspond to the lines u = u0 ± i
g with u0 real.

We see that

u0 = x+ +
1

x+
, x+ =

1

2

(
u0 ±

√
u2

0 − 4

)
, if u = u0 −

i

g
,

u0 = x− +
1

x− , x− =
1

2

(
u0 ±

√
u2

0 − 4

)
, if u = u0 +

i

g
.

It is clear that points x± and 1/x± of the complex x±-plane correspond to the same point

u of the u-plane. Then, the points of the circle |x+| = 1 map to points u in the interval

[−2 − i
g , 2 − i

g ] , while the points of |x−| = 1 correspond to u ∈ [−2 + i
g , 2 + i

g ]. On the

other hand, the points of the lines Im(x+) = 0 and Im(x−) = 0 correspond to points u

outside the intervals [−2− i
g , 2− i

g ] and [−2+ i
g , 2+ i

g ], respectively. Note also that if one

chooses a definite sign in eq. (4.7) then the interval [−2 ∓ i
g , 2 ∓ i

g ] maps onto a half of a

unit circle in the x±-plane. One has to use both signs to cover the unit circles |x±| = 1

and real lines Im(x±) = 0.

To determine the location of the upper and lower edges of the u-plane cuts [−2∓ i
g , 2∓ i

g ]

on the x±-planes, we introduce a small real parameter ǫ and write

x± = eǫeiϕ , |x±| = eǫ , Im(x±) = eǫ sin ϕ , u ≈ 2 cos ϕ ∓ i

g
+ 2iǫ sin ϕ . (4.8)

We see that the upper edges [−2∓ i
g + i0 , 2∓ i

g + i0] are mapped either outside the upper

halves or inside the lower halves of the circles |x±| = 1, and the lower edges [−2 ∓ i
g −
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i0 , 2∓ i
g − i0] are mapped either outside the lower halves or inside the upper halves of the

circles |x±| = 1, and vice verse:

[
− 2 ∓ i

g
+ i0 , 2 ∓ i

g
+ i0

]
⇐⇒

{
|x±| = 1 + 0 , Im(x±) > 0

|x±| = 1 − 0 , Im(x±) < 0
, (4.9)

[
− 2 ∓ i

g
− i0 , 2 ∓ i

g
− i0

]
⇐⇒

{
|x±| = 1 + 0 , Im(x±) < 0

|x±| = 1 − 0 , Im(x±) > 0
. (4.10)

As we discussed above, the z-torus can be divided into four non-intersecting regions

by the curves |x±| = 1. Now it is easy to show that each of the regions is mapped one-to-

one onto the u-plane with the two cuts. Let us consider for definiteness the region with

|x±| > 1. Then, according to the discussion above, the boundaries of the region with

|x+| = 1 + 0 , Im(x+) > 0 and |x+| = 1 + 0 , Im(x+) < 0 are mapped onto the upper and

lower edges of the cut [−2 − i
g , 2 − i

g ] in the u-plane, respectively. In the same way the

boundary of the region with |x−| = 1 is mapped onto the upper and lower edges of the cut

[−2 + i
g , 2 + i

g ], see figure 3.

Another way to understand how different copies of the u-plane are glued together is

to consider any of the curves |x±(z)| = 1 and shift its variable z by a small positive ǫ in

the imaginary direction. For the image of the corresponding shifted curve on the u-plane

one obtains

Im u(z + iǫ) = ∓1

g
+ ǫ Re

(
∂u

∂z

)
+ . . . , (4.11)

where Re
(

∂u
∂z

)
is computed along |x±| = 1. Further analysis shows that along any of the

curves |x±| = 1 the expression Re
(

∂u
∂z

)
is positive for −ω1

4 < Re z < ω1
4 and negative

otherwise. This determines how the edges of the cuts |x±| = 1 are mapped onto the edges

of the corresponding cuts on the u-plane (see figure 3 for an example ).

To summarize, any region confined between the curves |x±| = 1 is mapped under

z → u(z) onto a single copy of the u-plane with a point at infinity added, i.e. onto the

Riemann sphere. Extended to the whole torus, this map defines a four-fold covering of the

Riemann sphere by the torus which has eight ramification points:11 a generic point on the

u-plane has four images belonging to the four regions. There are two cuts on each copy of

the u-plane

1) [−2 + i/g, 2 + i/g]

2) [−2 − i/g, 2 − i/g]

which are images of the curves |x−| = 1 and |x+| = 1, respectively.

In the same way we can determine the images of the upper and lower edges of the

u-plane cuts (−∞,−2 ∓ i
g ] , [2 ∓ i

g ,∞) on the x±-planes. We again introduce a small real

parameter ǫ and write

x± = reiǫ , |x±| = |r| , Im(x±) ≈ rǫ , u ≈ r +
1

r
∓ i

g
+ iǫ(r − 1

r
) . (4.12)

11In agreement with the Riemann-Hurwitz formula.
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Figure 4: Four copies of the u-plane (the Riemann sphere) glued together through the cuts to

produce the torus of the kinematical variable z. We indicated four branch points B1,2 and C1,2

which are images of those on figure3.

We see that the upper edges (−∞,−2∓ i
g + i0] , [2∓ i

g + i0,∞) are mapped either onto the

upper edge of the intervals (−∞,−1] , [1,∞) or the lower edge of the interval [−1, 1], and

the lower edges (−∞,−2 ∓ i
g − i0] , [2 ∓ i

g − i0,∞) are mapped either onto the lower edge

of the intervals (−∞,−1] , [1,∞) or the upper edge of the interval [−1, 1] of the real lines

Im(x±) = 0, and vice verse:

(
−∞,−2 ∓ i

g
+ i0

]
∪

[
2 ∓ i

g
+ i0,∞

)
⇐⇒

{
Im(x±) = +0 , |x±| > 1

Im(x±) = −0 , |x±| < 1
, (4.13)

(
−∞,−2 ∓ i

g
− i0

]
∪

[
2 ∓ i

g
− i0,∞

)
⇐⇒

{
Im(x±) = +0 , |x±| < 1

Im(x±) = −0 , |x±| > 1
, (4.14)

Again, dividing the z-torus into four non-intersecting regions by the curves Im(x±) = 0, we

see that each of the regions also maps one-to-one onto the u-plane with the two cuts. This

gives a different (but equivalent) four-fold covering of the Riemann sphere by the torus.

When a point on the z-plane runs along the curve |x+| = 1 or |x−| = 1 its image covers

the corresponding interval on the u-plane twice. To appreciate this fact, let us note that if

z is, e.g., on the curve |x+| = 1 then the points

z± = −z ± ω1

2
+

ω2

2
(4.15)
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are also on this curve. Indeed, since |x+(z)|2 = x+(z)x−(z∗), we have

|x+(z±)|2 = x+

(
− z ± ω1

2
+

ω2

2

)
x−

(
− z∗ ± ω1

2
− ω2

2

)
=

1

|x+(z)|2 = 1 ,

where we have used the properties of Jacobi elliptic functions under the shifts by quarter-

periods. In the same way one finds that if z lies on a curve |x−| = 1 then the points z±
belong to another copy of |x−| = 1 which is obtained from the original one by the shift

by ω2. Finally, using the properties of the Jacobi elliptic functions it is easy to show that

u(z±) = u(z), i.e. the points z and z± have one and the same image on the u-plane.

It is clear that the half of the torus and, therefore, the complex p-plane is mapped

onto the u-plane twice. The coordinate u is real for real z, and in this case we can easily

express it in terms of p [5]

u(p) =
1

g
cot

p

2

√
1 + 4g2 sin2 p

2
. (4.16)

In the limit g → 0 the relation (4.16) turns to the one between the rapidity and momentum

variables of the Heisenberg spin chain; the latter describes the gauge theory at the one-loop

level. This supports an idea that the physical region could be identified with a single copy

of the u-plane, namely the one which maps to the region |x±| > 1 of the z-torus. There are

certain advantages of such a choice which we will discuss later on. The main disadvantage

is, however, that the region |x±| > 1 is not big enough to cover the whole complex p-plane.

It is interesting to see what happens with our three candidates for the physical region

in the limits g → ∞ and g → 0. In the limit g → ∞ the periods of the torus have the

following behavior

ω1 → log g

g
, ω2 → iπ

2g
if g → ∞ . (4.17)

To keep the range of Im(z) finite, we rescale z as z → z/(2g), and the momentum as

p → p/g. Then the dispersion relation (4.1) takes the relativistic form H2 − p2 = 1, the

variable z plays the role of θ because p = sinh z, and we have

• The torus degenerates to the strip with −π < Im(z) < π and −∞ < Re(z) < ∞

• The half-torus corresponding to the complex p-plane degenerates to the strip with

−π/2 < Im(z) < π/2 and −∞ < Re(z) < ∞

• The region |x±| > 1 corresponding to the complex u-plane degenerates to the strip

with −π/2 < Im(z) < π/2 and −∞ < Re(z) < ∞
We see that both the half-torus and the region |x±| > 1 degenerate to the physical strip of

a relativistic field theory.

In the limit g → 0 the periods of the torus have the following behavior

ω1 → π , ω2 → 2i log g if g → 0 . (4.18)

We see that all the three regions degenerate into the strip with −π/2 < Re(z) < π/2 and

−∞ < Im(z) < ∞. The properties of the S-matrix arising in the limit g → 0 will be

discussed in appendix B.
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4.2 Double Wick rotation

The z-torus can be also used to describe the mirror model. Since we know the relation

between p = 2am z and the mirror momentum p̃, we can express p̃ in terms of z. Indeed,

the equality

2 am z = 2i arcsinh
1

2g

√
1 + p̃2 (4.19)

implies

p̃ = −idn z . (4.20)

The energy in the mirror theory takes the form

H̃ = 2arccoth

√
k′

dn z
. (4.21)

The formulae above show that real values of z correspond to imaginary p̃. Now we

would like to understand for which values of z the corresponding values of p̃ are real. One

can see that if we shift the variable z by ω2/2, z → z + ω2/2, that is if we write

p̃ = −idn

(
z +

ω2

2
, k

)
≡

√
k′ sn z

cn z
, (4.22)

then for real values of the shifted variable z the corresponding values of p̃ are real as well.

We also recognize here a close analogy with the relativistic case — making the double Wick

rotation corresponds to the shift by a quarter-period on the rapidity plane. The function

cn(z, k) has zeroes at z = −1
2ω1 and z = 1

2ω1 (and dn(z, k) has poles at z = 1
2 (−ω1+ω2) and

z = 1
2 (ω1 + ω2)) which explains the apparent absence of the periodicity in p̃. Thus, when

the shifted variable z runs from −1
2ω1 to 1

2ω1 the momentum p̃ monotonically increases

from −∞ to +∞ and it passes though zero for z = 0.

One further finds that the parameters x± are expressed in terms of the shifted param-

eter z of the mirror model as follows

x± = −i

√
k′ ∓ dn z√
−k dn z

(
1 + i

√
k′ sn z

cn z

)
. (4.23)

We can now find how x± are expressed in terms of the mirror momentum. Indeed, since

(
cn z

sn z

)2

= −1 +
k

1 − dn2 z
,

we deduce from eq. (4.23) that

x± =
1

2g

(√

1 +
4g2

1 + p̃2
∓ 1

)
(p̃ − i) .

This, of course, agrees with the formula (2.15).
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The variables x± of the mirror theory obey a relation

x+x− =
p̃ − i

p̃ + i

which implies that |x+x−| = 1 for p̃ real.

It is also not difficult to show that the dispersion relation in the mirror theory takes

the form (2.11)

H̃ = 2arccoth

√
k′

dn z
= 2arccoth

√
1 − k

1 + p̃2
= 2arcsinh

1√
−k

√
1 + p̃2 .

This completes the proof that the double-Wick rotation corresponds to a shift of the z

variable by a quarter of the imaginary period of the torus, and the real axes of the shifted

z corresponds to real values of the momentum of the mirror theory.12

Finally, it is useful to express the rapidity u in terms of the shifted parameter z of the

mirror model and p̃. We have

u =
2cn

(
z + ω2

2 , k
)
dn

(
z + ω2

2 , k
)

√
−k sn

(
z + ω2

2 , k
) = −2i

√
k′ dn

(
z + ω2

2 , k
)

√
−k dn

(
z, k

) .

Then one can check that the points z = ±ω1/2 ± i0 are mapped to u = ±∞ ± i∞. The

coordinate u is real for real z, and in this case we can express it in terms of p̃

u =
2p̃√
−k

√
1 − k

1 + p̃2
=

p̃

g

√

1 +
4g2

1 + p̃2
.

Again, there are three choices of the physical region. It is the half-torus corresponding

to the complex p̃-plane, the whole torus, and the region Im(x±) < 0 which is mapped onto

the u-plane. The third choice is different from the one made for the string theory, and is

motivated by the analysis of the bound states of the mirror model.

5. S-matrix on elliptic curve

5.1 Elliptic S-matrix and its properties

The dispersion relation (4.1) is naturally parametrized by the elliptic curve. Without

imposing the unitarity condition for the S-matrix, the phase η in (3.23) can be chosen in

an arbitrary way, for instance, η(p) = 1. In the latter case, the S-matrix (3.24) is well

defined on the elliptic curve but it is non-unitary. It is therefore tempting to assume that

the unitary S-matrix also admits an analytic continuation into the complex z-plane. To

find such a continuation one has to resolve the branch cut ambiguities arising due to the

η-factor in the S-matrix (3.24): η(p) = e
i
4
p
√

ix−(p) − ix+(p).

12After having performed the shift, one can do various physically equivalent transformations of the shifted

z-variable preserving the axes of real z. Particular useful examples of these transformations are z →

z + ω1

2
, z → −z + ω1

2
, z → −z ±

ω1

2
.
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This can be done in the following way. First, we recall the elliptic parametrization (4.4)

which gives

η(p) = e
i
4
p
√

ix−(p) − ix+(p) =
1√
g
e

i
2
am z

√
1 + dn z

=
1√
g

√
(1 + dn z)(cn z + isn z) . (5.1)

Second, by using the following formulae (recall k = −4g2)

1 + dn z =
2dn2 z

2

1 − k sn4 z
2

, cn z + i sn z =

(
cn z

2 + i sn z
2dn z

2

)2

1 − k sn4 z
2

relating elliptic functions to those of the half argument, we can resolve the branch cut

ambiguities by means of the relation

e
i
4
p
√

ix−(p) − ix+(p) =

√
2√
g

dn z
2

(
cn z

2 + i sn z
2dn z

2

)

1 + 4g2 sn4 z
2

≡ η(z) (5.2)

valid in the region −ω1
2 < Re z < ω1

2 and −ω2/i < Im z < ω2/i. Further, we notice that the

non-local dependence of η’s on the momentum of another particle enters as e
i
2
p = eiam z

and, therefore, can be naturally treated as e
i
2
p = cn z + i sn z.

Thus, we define an analytic continuation of the S-matrix onto the rapidity torus for

each of the complex variables z1 and z2 by means of eq. (3.24), where the variables η1,2

and η̃1,2 are given by

η1 = η(z1)(cn z2 + i sn z2) , η2 = η(z2) ,

η̃2 = η(z2)(cn z1 + i sn z1) , η̃1 = η(z1) .

In this way we completely resolved the branch cut ambiguities of the S-matrix (3.24) and

defined it as a meromorphic function on the elliptic curve (for each z-variable). It is

remarkable to observe that such a continuation becomes possible due to additional phase

factors, e
i
4
p, introduced in the previous section to guarantee unitarity of the mirror theory.

Let us now analyze the basic properties of the elliptic S-matrix. One can check that it

satisfies the Yang-Baxter equation and the usual unitarity requirement

S12(z1, z2)S21(z2, z1) = I . (5.3)

Further, it obeys the generalized unitarity condition:

S12(z
∗
1 , z∗2)

[
S12(z1, z2)

]†
= I . (5.4)

Here “ † ” means hermitian conjugation. For z1 and z2 real the last condition reduces to

the requirement of physical unitarity. In fact, one can see that the elliptic S-matrix is

compatible with the generalized unitarity condition only due to our specific choice for the

phase factors discussed above. Then, unitarity and generalized unitarity imply hermitian

analyticity: S21(z
∗
2 , z∗1) =

[
S12(z1, z2)

]†
.
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Let us now compute monodromies of the S-matrix (3.24) over the real and imaginary

periods. We find

S(z1 + 2ω1, z2) = Σ1 S(z1, z2)Σ1 = Σ2 S(z1, z2)Σ2 ,

S(z1 + 2ω2, z2) = Σ1 S(z1, z2)Σ1 = Σ2 S(z1, z2)Σ2 .
(5.5)

Hence, the S-matrix exhibits the same monodromies over real and imaginary cycles and it

is a periodic function on a double torus with periods 4ω1 and 4ω2. Here Σ1 = Σ ⊗ I and

Σ2 = I⊗Σ, where Σ is defined in section 3.4, and the S-matrix commutes with the product

Σ ⊗ Σ. Note that Σ is in the center of the group SU(2) × SU(2).

Second, we establish the monodromy properties w.r.t. shifts by half-periods. Under

the shift by the real half-period we get

S(z1 + ω1, z2) =
(
V ⊗ Σ

)
S(z1, z2)

(
V −1 ⊗ I

)
, (5.6)

where V = diag
(
e−

iπ
4 , e−

iπ
4 , e

iπ
4 , e

iπ
4

)
.

The shift by the imaginary half-period corresponds to the crossing symmetry trans-

formation [12]. To discuss it, we multiply the S-matrix (3.24) with a scalar factor S0 to

produce the string S-matrix obeying crossing symmetry

S(z1, z2) = S0(z1, z2)S(z1, z2) . (5.7)

We then find that with a proper choice for S0(z1, z2) the string S-matrix exhibits the

following crossing symmetry relations

C−1
1 St1

12(z1, z2)C1S12(z1 + ω2, z2) = I , C1St1
12(z1, z2)C−1

1 S12(z1 − ω2, z2) = I , (5.8)

and also

C−1
1 St1

12(z1, z2)C1S12(z1, z2 − ω2) = I , C1St1
12(z1, z2)C−1

1 S12(z1, z2 + ω2) = I . (5.9)

Here t1 denotes transposition in the first matrix space and C is a constant13 charge conju-

gation matrix

C =

(
σ2 0

0 i σ2

)
, (5.10)

where σ2 is the Pauli matrix. The compatibility of eqs. (5.8) and (5.9) with (5.5) is

guaranteed by the identity CΣ = C−1 which is equivalent to C2 = Σ.

The crossing symmetry relations lead to the following equations for the scalar factor

S0 [12]

S0(z1, z2)S0(z1 + ω2, z2) = f(z1, z2) , S0(z1, z2)S0(z1, z2 − ω2) = f(z1, z2) , (5.11)

13This is in opposite to [47], where the charge conjugation matrix was found to depend on the sign of

the particle momentum. This dependence is, in fact, spurious and it gets removed by a proper resolution

of the branch cut ambiguities we propose here.
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where the function f is expressed through x± as follows

f(z1, z2) =

(
1

x−
1

− x−
2

)
(x−

1 − x+
2 )

(
1

x+
1

− x−
2

)
(x+

1 − x+
2 )

. (5.12)

One can easily check that the function f(z1, z2) obeys the following properties

f(z2, z1)f(z1 + ω2, z2) = 1 = f(z2, z1)f(z1, z2 + ω2) , f(z1 + ω2, z2 + ω2) = f(z1, z2) ,

which are, however, incompatible with the assumption that the scalar factor is an analytical

function of z1, z2.

Another important property of the string S-matrix (5.7) is that it remains invariant

under the simultaneous shift of z1 and z2 by ω2:

S(z1 + ω2, z2 + ω2) = S(z1, z2) . (5.13)

This follows from the fact that both the S-matrix (3.24) and the scalar factor S0 are

invariant under the shift. This property together with the crossing relations (5.8), (5.9)

implies

St1,t2(z1, z2) = C1C2S(z1, z2)C−1
1 C−1

2 = C−1
1 C−1

2 S(z1, z2)C1C2 ,

where t1 and t2 mean the transposition in the first and in the second matrix spaces,

respectively.

Assuming that the above-mentioned properties of the S-matrix (3.24) are shared by S,

we can now see that the string S-matrix allows one to define consistently an elliptic analog

of the ZF algebra, i.e.

A1(z1)A2(z2) = S12(z1, z2)A2(z2)A1(z1) ,

A†
1(z1)A

†
2(z2) = A†

2(z2)A
†
1(z1)S12(z1, z2) ,

(5.14)

where the creation and annihilation ZF operators are now functions of the complex variable

z. In addition, away from the line z1 = z2 we can impose the following relation between

the creation and annihilation operators

A1(z1)A
†
2(z2) = A†

2(z2)S21(z2, z1)A1(z1) . (5.15)

As usual, the absence of cubic and higher relations for the ZF operators is guaranteed by

the Yang-Baxter equation for S. Furthermore, the validity of relations (5.14), (5.15) for

all values of z1 and z2 is due to unitarity condition (5.3).

Transposing the second equation in (5.14) in the first matrix space we get

(A†
1(z1))

t1A†
2(z2) = A†

2(z2)St1
12(z1, z2)(A

†
1(z1))

t1 ,

On the other hand, shifting in eq. (5.15) the variable z1 by the imaginary half-period we

obtain

A1(z1 + ω2)A
†
2(z2) = A†

2(z2)S12(z1 + ω2, z2)
−1A1(z1 + ω2) .
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Since the string S-matrix satisfies the crossing relation we see that the algebra structure is

compatible with the following identification

A(z + ω2) = C−1A†(z)t , A†(z − ω2) = −A(z)tC . (5.16)

Analogously, we establish

A(z − ω2) = CA†(z)t , A†(z + ω2) = −A(z)tC−1 . (5.17)

These relations together with the monodromy properties (5.5) of the S-matrix further imply

A(z + 2ω1) = ΣA(z) , A†(z + 2ω1) = A†(z)Σ ,

A(z + 2ω2) = ΣA(z) , A†(z + 2ω2) = A†(z)Σ .

This means that the bosonic operators are unchanged under the shift around the torus while

fermionic ones acquire the minus sign. Thus, the monodromy properties of the S-matrix

imply the spin structure (−,−) for the fermionic ZF operators.

Finally, the generalized unitarity condition (5.4) allows one to impose the following

hermiticity conditions on the ZF operators:

[Ai(z)]† = A†
i (z

∗) for 0 < |Im z| <
ω2

2i
;

[Ai(z)]† = −A†
i (z

∗) for
ω2

2i
< |Im z| <

ω2

i
.

(5.18)

The hermiticity condition for the ZF creation and annihilation operators in the anti-particle

region ω2/2i < |Im z| < ω2/i is compatible with the hermiticity condition for the ZF

operators in the particle region 0 < |Im z| < ω2/2i and the identifications (5.16) and (5.17).

5.2 Unitarity of the scalar factor in mirror theory

It is clear from the discussion above that the S-matrix of the mirror theory is obtained

from the string S-matrix just by the shift of the z-variables by ω2/2

S̃(z1, z2) = S(z1 +
ω2

2
, z2 +

ω2

2
) . (5.19)

The momentum of the mirror theory is expressed in terms of the variable z by eq. (4.20)

and is real for real values of z, and the generalized unitarity of the mirror S-matrix in terms

of the shifted coordinates z takes the usual form

[
S̃(z1, z2)

]†
S̃(z∗1 , z∗2) = I . (5.20)

This just follows from the generalized unitarity of the string S-matrix and relation (5.13)

which is a consequence of the crossing equations

[
S̃12(z1, z2)

]†
= S21

(
z∗2 − ω2

2
, z∗1 − ω2

2

)
= S21

(
z∗2 +

ω2

2
, z∗1 +

ω2

2

)
= S̃21(z

∗
2 , z∗1) .

In fact, since both the S-matrix (3.24) and the scalar factor S0 satisfy the generalized

unitarity condition and relation (5.13), the same holds for the mirror theory.
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It is of interest to understand how the dressing factor of the mirror theory transforms

under the complex conjugation. To this end we recall that in the a = 0 light-cone gauge14

the scalar factor of the string S-matrix can be written in the form [18]

S0(z1, z2)
2 = s(z1, z2)σ(z1, z2) , s(z1, z2) =

x−
1 − x+

2

x+
1 − x−

2

1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2

. (5.21)

Here the gauge-independent dressing factor σ(z1, z2) has the following structure [6]

1

i
ln σ(z1, z2) ≡ θ(z1, z2) =

∞∑

r=2

∞∑

s=r+1

cr,s(g)

[
qr(z1)qs(z2) − qr(z2)qs(z1)

]
, (5.22)

where qr(z) = i
r−1

[
(x+)1−r − (x−)1−r

]
are the local conserved charges. At any order of the

perturbative expansion in powers of 1/g the sums in r and s define the convergent series

for |x±
1 | > 1 and |x±

2 | > 1. Thus, the S-matrix is by construction well-defined only in the

region where |x±| > 1 and it should be analytically continued for other values of x±.

The string theory dressing factor satisfies the generalized unitarity condition that fol-

lows from the fact that under the complex conjugation the variables x± transform as

[x±(z)]
†

= x∓(z∗). In the mirror theory the variables x± depend on the shifted coordinate

z and, as a result, satisfy the following complex conjugation rule

[
x±

(
z +

ω2

2

)]†
=

1

x∓(z∗ + ω2
2 )

.

By using this rule one can easily check that the factor s(z1, z2) in (5.21) transforms under

the complex conjugation as follows

[s(z∗1 , z∗2)]† s(z1, z2) =

(
x−

1 x+
2

x+
1 x−

2

)2

, (5.23)

where x±
i = x±(zi +

ω2
2 ). Taking into account that the scalar factor S0 of the mirror theory

satisfies the generalized unitarity condition, we find the complex conjugation rule for the

dressing factor of the mirror theory

[σ(z∗1 , z∗2)]† σ(z1, z2) =

(
x+

1 x−
2

x−
1 x+

2

)2

. (5.24)

In particular, for real values of z’s corresponding to real p̃’s the dressing factor of the mirror

theory is not unitary.

It is interesting to note that the scalar factor can be split into a product of two factors

satisfying the generalized unitarity condition in both string and mirror theory

S0(z1, z2)
2 =

x−
1 − x+

2

x+
1 − x−

2

x+
1 x−

2 − 1

x−
1 x+

2 − 1
× x−

1 x+
2

x+
1 x−

2

σ(z1, z2) . (5.25)

14It is easy to check that the additional a-dependent factor does not break any of the properties of the

S-matrix.
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Another interesting splitting is given by

S0(z1, z2)
2 =

u1 − u2 − 2i
g

u1 − u2 + 2i
g

×




1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2




2

σ(z1, z2) . (5.26)

This splitting is useful for analyzing the bound state spectrum of the mirror model.

Knowing the series representation for the dressing phase in the original theory [13], it

is interesting to understand what is precisely the source of its unitarity breakdown in the

mirror theory.

To clarify this issue, we recall that the dressing phase can be conveniently written in

terms of a single function χ(x1, x2) [18]

θ(z1, z2) = χ(x+
1 , x+

2 ) − χ(x+
1 , x−

2 ) − χ(x−
1 , x+

2 ) + χ(x−
1 , x−

2 )

−χ(x+
2 , x+

1 ) + χ(x−
2 , x+

1 ) + χ(x+
2 , x−

1 ) − χ(x−
2 , x−

1 ) ,

which admits the following strong coupling expansion

χ(x1, x2) = g

∞∑

n=0

χ(n)(x1, x2)

(
g

2

)−n

.

Here

χ(0)(x1, x2) = − 1

x2
− x1x2 − 1

x2
log

x1x2 − 1

x1x2

is the leading AFS factor [6]. The next-to-leading contribution is [16]:

χ(1)(x1, x2) = − 1

2π
Li2

√
x1 − 1/

√
x2√

x1 −
√

x2
− 1

2π
Li2

√
x1 + 1/

√
x2√

x1 +
√

x2

+
1

2π
Li2

√
x1 + 1/

√
x2√

x1 −
√

x2
+

1

2π
Li2

√
x1 − 1/

√
x2√

x1 +
√

x2
. (5.27)

All higher terms are rational functions of x1, x2 [13]. As we will now show, the unitar-

ity breakdown of the dressing phase is due to the leading AFS contribution only, the

Hernández-López term (5.27), as well as all higher order terms do not influence the uni-

tarity condition.

To simplify the notations in what follows we only consider the case of real z’s in the

mirror theory. It is easy to see that the complex conjugate of the function χ(0) is given by

[
χ(0)(x±

1 , x±
2 )

]∗
= −χ(0)(x∓

2 , x∓
1 ) − iπ + 1

x∓
1

+ (iπ − 1)x∓
2 −

(
1

x∓
1

− x∓
2

)
log x∓

1 x∓
2 .

Using this formula for computing the leading value θAFS, we find that the contribution of

non-logarithmic terms cancels out and we get

θ∗AFS = θAFS + g
x−

1 − x−
2

x−
1 x−

2

(1 − x−
1 x−

2 ) log x−
1 x−

2 + g
x+

1 − x+
2

x+
1 x+

2

(1 − x+
1 x+

2 ) log x+
1 x+

2

– 35 –



J
H
E
P
1
2
(
2
0
0
7
)
0
2
4

− g
x−

1 − x+
2

x−
1 x+

2

(1 − x−
1 x+

2 ) log x−
1 x+

2 + g
x−

2 − x+
1

x+
1 x−

2

(1 − x+
1 x−

2 ) log x+
1 x−

2 .

Using identity (4.3), it is easy to show that all logarithmic terms are neatly combined to

produce the following answer

θ∗AFS = θAFS + i log

(
x+

1 x−
2

x−
1 x+

2

)2

, (5.28)

which coincides with the logarithmic form of eq. (5.24).

Since we have shown that the shift of the phase under the complex conjugation occurs

due to the leading contribution, all the higher order terms in the expansion of θ must be

real functions. To convince oneself that this is indeed the case, we consider the next-to-

leading term in the strong coupling expansion of θ. As was shown in [13], this term admits

the following representation

θHL = ψ(q+
1 − q+

2 ) − ψ(q+
1 − q−2 ) − ψ(q−1 − q+

2 ) + ψ(q−1 − q−2 ) . (5.29)

Here the function ψ(q) is

ψ(q) =
1

2π
Li2(1 − eiq) − 1

2π
Li2(1 − eiq+iπ) − i

2
log(1 − eiq+iπ) +

π

8
, (5.30)

where the variables q± are related to x± through

eiq± =
x± + 1

x± − 1
. (5.31)

Taking into account the conjugation rule in the mirror theory, eq. (3.20), we obtain

(q±)∗ = −q∓ − π . (5.32)

Since θHL depends on the difference of two q′s, the shift by π arising upon the complex

conjugation will cancel out. Thus, taking the complex conjugate we obtain

θ∗HL = ψ̄(q−1 − q−2 ) − ψ̄(q−1 − q+
2 ) − ψ̄(q+

1 − q−2 ) + ψ̄(q+
1 − q+

2 ) , (5.33)

where the function ψ̄(q) is defined as

ψ̄(q) =
1

2π
Li2(1 − eiq) − 1

2π
Li2(1 − eiq−iπ) − i

2
log(1 − eiq−iπ) +

π

8
. (5.34)

Taking into account the following transformation property of the dilogarithm function

Li2(1 − eiq−iπ) = Li2(1 − eiq+iπ−2πi) = Li2(1 − eiq+iπ) + 2πi log(1 − eiq) ,

we find that

ψ̄(q) = ψ(q) + π .

Since the shift by π in the previous formula does not contribute to θ∗HL, we conclude that

θ∗HL = θHL. Finally, by working out several higher order terms χ(k), one can easily check

that they always lead to the real functions θ, in accord with eqs. (5.24) and (5.28).

Thus, we have shown that under the double Wick rotation the scalar factor remains

unitary, while the dressing factor does not; the non-unitarity of the dressing factor is only

due to the leading contribution θAFS, which is another distinguished property of θAFS.

Concluding this section, we note that it would be interesting to understand whether the

BES factor [14] exhibits the same kind of non-unitarity behavior in the mirror theory.
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6. Bethe ansatz equations

In this section we discuss the nested Bethe equations for the light-cone string theory on

AdS5 × S5 and its mirror model. These equations based on the su(2|2) ⊕ su(2|2)-invariant

string S-matrix [47] were recently derived by using the algebraic [60] and the coordinate [67]

Bethe ansatz approaches. In the sector with even winding number, i.e. with the total

momentum P satisfying eiP/2 = 1, the set of equations found in these papers coincides with

the one previously obtained in [8, 9] by using the spin chain description of the gauge theory.

It appears, however, that in the sector with odd winding number, where eiP/2 = −1, the

Bethe equations by [60, 67] differ from the ones derived from the gauge theory. The origin of

this disagreement can be traced back to the fact that in the light-cone gauge the fermions of

the string sigma model are anti-periodic in the odd winding number sector [68, 56], and this

changes the periodicity conditions for wave functions which one imposes to get the Bethe

equations. Indeed, in the light-cone gauge one of the fields, an angle φ which parametrizes

the five-sphere, appears to be unphysical and it is solved in terms of (transversal) physical

fields. In particular, the equation of motion for φ implies

φ(2π) − φ(0) = P .

Since φ enters into parametrization of the five-sphere via eiφ, the closed string periodicity

condition for physical fields gives rise to the winding sectors

φ(2π) − φ(0) = 2πm ,

where m is an integer. Now, we recall that fermions of the original string sigma-models

are charged w.r.t. the U(1) isometry acting on φ as φ → φ+const. Also, the Wess-Zumino

term in the sigma-model action contains eiφ, i.e. it is non-local in terms of physical fields.

To uncharge the fermions under the U(1) isometry, as well as to make the Wess-Zumino

term local, one has to redefine the fermions as

ψ → e
i
2φψ .

Thus, the redefined fermions acquire the periodicity properties which do depend on the

winding sector

ψ(0) = e
i
2P ψ(2π) = eiπmψ(2π) ,

i.e. they are periodic in the even winding sector and they are ant-periodic in the odd

winding sector [68, 56].

As a result, the Bethe equations obtained in [60, 67] correctly describe the light-cone

string theory in the sector with periodic fermions only. Changing the boundary conditions

for fermions to anti-periodic, one derives a new set of Bethe equations which does agree

with the gauge theory one for physical states satisfying eiP/2 = −1.

6.1 BAE for a model with the su(2|2)-invariant S-matrix

The asymptotic states of both the original and the mirror theory are constructed by apply-

ing the ZF operators A†
MṀ

to the vacuum state. The indices M and Ṁ are associated with
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two factors of the centrally-extended su(2|2)⊕ su(2|2) algebra; the latter being the symme-

try algebra of the light-cone string theory [9, 10]. For our present purpose it is convenient

to think about the ZF operator as being a product of two (anti)commuting operators each

transforming in a fundamental representation of su(2|2): A†
MṀ

∼ A†
MA†

Ṁ
. Since the string

S-matrix is a tensor product of two su(2|2)-invariant S-matrices, the Bethe equations for

the string model are, in a sense, the square of the Bethe equations for a model with the

su(2|2)-invariant S-matrix. We start with discussing the Bethe equations for such a model.

The multi-particle wave function which satisfies the Bethe periodicity conditions can

be written as a superposition of the asymptotic states (see appendix C.1 for details)

|Ψ〉 =
∑

ΨM1···MKI A†
M1

(p1) · · ·A†
M

KI
(pKI )|0〉 , (6.1)

where KI is a number of particles in the asymptotic state and pi are their momenta. Denote

by N(M) the number of particles of type M (that is number of indices of type M) occurring

in the wave function (6.1). Obviously,

KI = N(1) + N(2) + N(3) + N(4) .

Since the scattering is elastic, the number of particles KI is a conserved quantity.

The form of the Bethe equations derived through the nesting procedure of the coordi-

nate Bethe ansatz depends on the choice of the initial reference state. Due to the su(2)2

bosonic symmetry there are two inequivalent choices for a model with the su(2|2)-invariant

S-matrix. This is obviously related to the two forms of the Dynkin graph for su(2|2).
First, one can choose a “bosonic” reference state which is created by acting with KI

bosonic operators A†
1 on the vacuum:

A†
1(p1) . . . A†

1(pKI)|0〉 .

Then, we define

KII
+ = 2N(2) + N(3) + N(4) , KIII = N(2) + N(4) .

It appears that in the scattering process not only KI but also these numbers are con-

served [9]. By this reason, the values of KII
+ and KIII are the same for any term in the

sum (6.1). In particular, KII
+ plays the role of the fermionic number, because in the back-

ground of the A†
1-particles A†

2 counts for two fermions. The number KIII has a similar

meaning.

Then the asymptotic Bethe equations based on the su(2|2)-invariant S-matrix for a

sigma model on a circle of length R and with (anti)-periodic fermions can be written in

the form [9, 60, 67]

eipkR =

KI∏

l=1
l 6=k

S0(pk, pl)
x+

k − x−
l

x−
k − x+

l

√
x+

l x−
k

x−
l x+

k

KII
+∏

l=1

x−
k − yl

x+
k − yl

√
x+

k

x−
k

(−1)ǫ =
KI∏

l=1

yk − x+
l

yk − x−
l

√
x−

l

x+
l

KIII∏

l=1

vk − wl + i
g

vk − wl − i
g

(6.2)
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1 =

KII
+∏

l=1

wk − vl − i
g

wk − vl + i
g

KIII∏

l=1
l 6=k

wk − wl + 2i
g

wk − wl − 2i
g

.

Here ǫ = 0 for a sector with periodic fermions and ǫ = 1 for a sector with anti-periodic

fermions, x±
k depend on the momentum pk of the model, yl and wl are auxiliary roots of

the second and third levels, respectively, and v = y + 1
y .

On the other hand, if one chooses a “fermionic” reference state created by KI fermionic

operators A†
3:

A†
3(p1) . . . A†

3(pKI)|0〉 ,

then, one should define

KII
− = 2N(4) + N(1) + N(2) , KIII = N(2) + N(4) ,

because these numbers are also conserved in the scattering process. Then, KII
− plays the

role of the bosonic number, because in the background of the A†
3-particles A†

4 counts for

two bosons.

Then the corresponding Bethe equations take the following form

eipkR = (−1)ǫ
KI∏

l=1
l 6=k

S0(pk, pl)

KII
−∏

l=1

x+
k − yl

x−
k − yl

√
x−

k

x+
k

(−1)ǫ =
KI∏

l=1

yk − x+
l

yk − x−
l

√
x−

l

x+
l

KIII∏

l=1

vk − wl + i
g

vk − wl − i
g

(6.3)

1 =

KII
−∏

l=1

wk − vl − i
g

wk − vl + i
g

KIII∏

l=1
l 6=k

wk − wl + 2i
g

wk − wl − 2i
g

.

Equations (6.3) can be derived either by using the nesting procedure of the coordinate

Bethe ansatz (see appendix C.2 for an example) or by applying the duality transformation

discussed in [8] to eqs. (6.2). Comparing the two sets of Bethe equations (6.2) and (6.3),

we see that only the first lines in two sets are different. Let us stress, however, that in

general KII
− 6= KII

+ . We further note that the bosonic reference state corresponds to, say,

η1 = 1 and the fermionic one to η1 = −1, where η1 and η2 are the gradings introduced

in [8].

6.2 BAE based on the su(2|2) ⊕ su(2|2)-invariant string S-matrix

The Bethe equations based on the su(2|2)⊕su(2|2)-invariant string S-matrix for both string

and mirror models can be now easily written by taking a “product” of two copies of the

Bethe equations for the su(2|2)-invariant model. Since any of the two sets, (6.2) and (6.3),

can be used there are four different forms of the asymptotic Bethe equations based on the
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su(2|2) ⊕ su(2|2)-invariant S-matrix [8]. The corresponding bosonic reference states of the

coordinate Bethe ansatz are of the form

A†
11̇

(z1) . . . A†
11̇

(zKI)|0〉 , η1 = η2 = 1 ; A†
33̇

(z1) . . . A†
33̇

(zKI)|0〉 , η1 = η2 = −1 ,

and fermionic reference states are

A†
13̇

(z1) . . . A†
13̇

(zKI)|0〉 , η1 = −η2 = 1 ; A†
31̇

(z1) . . . A†
31̇

(zKI)|0〉 , η1 = −η2 = −1 ,

where for the original theory the z-variables lie on the real line, while for the mirror theory

they have Im z = ω2/2i, and we also indicated the corresponding gradings.

To discuss the bound states of the light-cone string sigma model, it is convenient to

choose as the reference state the one created by the bosonic operators A†
11̇

. These reference

states are dual to gauge theory operators from the su(2) sector. Then the corresponding

Bethe equations based on the su(2|2)⊕ su(2|2)-invariant string S-matrix can be written in

the form [8, 9, 60, 67]

eipkJ =

KI∏

l=1
l 6=k

[
S0(pk, pl)

x+
k − x−

l

x−
k − x+

l

√
x+

l x−
k

x−
l x+

k

]2 2∏

α=1

KII
(α)∏

l=1

x−
k − y

(α)
l

x+
k − y

(α)
l

√
x+

k

x−
k

(−1)ǫ =
KI∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√
x−

l

x+
l

KIII
(α)∏

l=1

v
(α)
k − w

(α)
l + i

g

v
(α)
k − w

(α)
l − i

g

(6.4)

1 =

KII
(α)∏

l=1

w
(α)
k − v

(α)
l − i

g

w
(α)
k − v

(α)
l + i

g

KIII
(α)∏

l=1
l 6=k

w
(α)
k − w

(α)
l + 2i

g

w
(α)
k − w

(α)
l − 2i

g

.

Here we take into account that the string sigma model in the a = 0 light-cone gauge is

defined on a circle of length J , α = 1, 2 reflects the two copies of su(2|2) and y
(α)
l and w

(α)
l

are auxiliary roots of the second and third levels, respectively, and v = y + 1
y .

For the reader’s convenience we point out that the excitation numbers in the set of

Bethe equations are related to the ones used in [8] as follows

(KIII
(1) , KII

(1) , KI , KII
(2) , KIII

(2)) = (K2,K1 + K3,K4,K5 + K7,K6) ,

and the Dynkin labels [q1, p, q2] of su(4) and [s1, s2] of su(2)⊕su(2) ⊂ su(2, 2) are expressed
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in terms of the excitation numbers by the following formulas15

q1 = KI − KII
(1) , s1 = KII

(1) − 2KIII
(1) ,

p = J − KI +
1

2
(KII

(1) + KII
(2)) , s2 = KII

(2) − 2KIII
(2) ,

q2 = KI − KII
(2) .

(6.5)

To analyze the bound states of the mirror theory, it is more convenient, however, to

choose as an initial reference state the one created by the operators A†
33̇

. The reason is

that the operators A†
33̇

create states from the sl(2) sector, and, as we have seen, it is this

sector which gives rise to mirror magnons. Analogously, there are M -particle bound states

made only out of the A†
33̇

-type particles.

If we choose in the mirror theory the above-described reference state then the corre-

sponding Bethe equations take the form

eiepkR =
KI∏

l=1
l 6=k

[S0(p̃k, p̃l)]
2

2∏

α=1

KII
(α)∏

l=1

x+
k − y

(α)
l

x−
k − y

(α)
l

√
x−

k

x+
k

−1 =

KI∏

l=1

y
(α)
k − x+

l

y
(α)
k − x−

l

√
x−

l

x+
l

KIII
(α)∏

l=1

v
(α)
k − w

(α)
l + i

g

v
(α)
k − w

(α)
l − i

g

(6.6)

1 =

KII
(α)∏

l=1

w
(α)
k − v

(α)
l − i

g

w
(α)
k − v

(α)
l + i

g

KIII
(α)∏

l=1
l 6=k

w
(α)
k − w

(α)
l + 2i

g

w
(α)
k − w

(α)
l − 2i

g

.

Note that in the mirror model we do not have (−1)ǫ in the middle equation because the

fermions are always anti-periodic16 with respect to σ̃. In terms of excitation numbers, the

Dynkin labels read now as follows

q1 = KII
(1) − KIII

(1) , s1 = KI − KII
(1) ,

p = J − 1

2
(KII

(1) + KII
(2)) + KIII

(1) + KIII
(2) , s2 = KI − KII

(2) ,

q2 = KII
(2) − KIII

(2) .

(6.7)

7. Bound states of the AdS5 × S
5 gauge-fixed model

Bound states arise as poles of the multi-particle S-matrix corresponding to complex values

of the particle momenta, see e.g. [69]. In the thermodynamic limit they are described by

15Let us note in passing that in recent papers [70, 71] the anomalous dimension of the operator TrFL

was computed by using the asymptotic Bethe ansatz with an understanding that in the large L limit one

may trust the corresponding result to an arbitrary loop order. One can notice, however, that the excitation

pattern of Bethe roots for the operator is (KIII
(1) , KII

(1) , KI , KII
(2) , KIII

(2)) = (0, 2L− 3, 2L− 2, 2L− 4, L− 2)

with J = 3
2
, and, therefore, one would expect the breakdown of the asymptotic ansatz due to the finite size

effects already at two loops. It may happen that the asymptotic ansatz could still be used to determine

the leading L behavior of the anomalous dimension of TrFL if the finite-size corrections are subleading at

large L, but this is currently unknown.
16We are grateful to R. Janik and M. Martins for drawing our attention to this point.
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string-like solutions known as “Bethe strings”. In this section we discuss in detail the bound

states of the string sigma-model. They have been already analyzed in [50, 51]. The main

outcome of this analysis is that the M -particle bound states comprise into short (BPS)

multiplets of the centrally extended su(2|2) ⊕ su(2|2) symmetry algebra. Although the

S-matrix exhibits additional simple and double poles beyond those corresponding to the

BPS multiplets, these singularities do not lead however to the appearance of new bound

states [52]. In other words, the only bound states in the theory are the BPS ones. As we

will see, they exist for all values of the (real) bound state momentum −π ≤ p ≤ π, but

have a rather intricate structure. Moreover, depending on the choice of the physical region

for a given value of the bound state momentum there could be 1, 2 or 2M−1 M -particle

bound states sharing the same set of global conserved charges: Qr =
∑M

i=1 qr(zi). It is

unclear to us whether this indicates that the actual physical region is the one that contains

only a single M -particle bound state (it is the one with |x±| > 1) or it is a sign of a hidden

symmetry of the model responsible for the degeneracy of the spectrum.

7.1 Two-particle bound states

Let us consider a bound state made of two excitations from the su(2) sector of the string

sigma-model. In terms of the ZF creation operators we can think about this state as

A†
11̇

(p1)A
†
11̇

(p2)|0〉 ,

where the particle momenta p1 and p2 are complex. We find it convenient to parametrize

the momenta as follows

p1 =
p

2
− iq , p2 =

p

2
+ iq , Re q > 0 , (7.1)

where p is the real total momentum of the bound state. When q is real then p1 and p2 are

complex conjugate to each other and the energy of the corresponding bound state being the

sum of the (complex) energies of individual particles is obviously real. Interestingly, as we

will show below, there necessarily exists a branch of BPS bound states which corresponds

to complex values of q with Re q > 0. Such solutions can be reinterpreted as solutions

parametrized by a new real variable q: q → Re q and for which the real parts of p1 and p2

are not anymore equal to each other. Of course, one has to check that the energy of these

solutions is real.

The first equation in the set of the Bethe equations [6] takes the form

ei(p/2+Im q)LeRe q L = eiP
KI∏

l=2

x+
1 − x−

l

x−
1 − x+

l

1 − 1
x+
1 x−

l

1 − 1
x−
1 x+

l

σ1l , (7.2)

where P = p1 + p2 + · · · + pKI and L = J + KI with J being one of the global charges

corresponding to the isometries of the five-sphere.
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We see that for large L the l.h.s. is exponentially divergent. Then, there should exist

a root p2 such that for Re q > 0 we have17

(
x−

1 − x+
2

)(
1 − 1

x−
1 x+

2

)
∼ e−Re q L . (7.3)

In the infinite L limit eq. (7.3) becomes

(
x−

1 − x+
2

) (
1 − 1

x−
1 x+

2

)
= 0 , (7.4)

which is equivalent to

x−
1 − x+

2 = 0 or 1 − 1

x−
1 x+

2

= 0 . (7.5)

The first equation

x−
1 − x+

2 = 0 (7.6)

implies that the central charges corresponding to the two-particle bound state saturate the

BPS condition [50]

H2 = 22 + 4g2 sin2 p

2
. (7.7)

On the contrary, solutions of the second equation in (7.5) do not saturate the BPS bound,

and as was argued in [52], this pole of the S-matrix does not correspond to a bound state.

It is easy to see that equation (7.6) is equivalent to vanishing the following fourth order

polynomial18 in the variable t = cos p
2

4eq(t − eq)(1 − eqt) + g2(t2 − 1)(1 − 2eqt + e2q)2 = 0 . (7.8)

The equation has four solutions which can be cast to the following simple form

eq =

(√
1 + g2 sin2 p

2 ± 1
) (

cos p
2

√
1 + g2 sin2 p

2 ±
√

cos2 p
2 − g2 sin4 p

2

)

g2 sin2 p
2

, (7.9)

where any choice of the ± sign is possible.

Analysis of eq. (7.9) immediately shows that solutions corresponding to real values of

q exist if and only if the total momentum p does not exceed a critical value pcr determined

by

sin2 pcr

2
=

1

2g2

(√
1 + 4g2 − 1

)
. (7.10)

17We assume here and in what follows that the dressing factor σ12 is non-singular on solutions of the

bound state equation.
18For any p there are two solutions for x− and, therefore, for x+ = eipx−. The fourth order polynomial

is universal and it does not depend on which solution for x− we take.
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For any given p obeying |p| < pcr equation (7.8) has four real roots for q, two of them

are positive and the other two are negative. According to our assumption Re q > 0, only

positive roots are acceptable.19 They are given by the formula

eq± =

(√
1 + g2 sin2 p

2 + 1
) (

cos p
2

√
1 + g2 sin2 p

2 ±
√

cos2 p
2 − g2 sin4 p

2

)

g2 sin2 p
2

. (7.11)

Various expansions of eq. (7.11) for small and large values of g can be found in appendix D.

It turns out that from the two positive roots only the smaller one, q−, falls inside the

region confined by the curves |x±| = 1. We therefore arrive at the conclusion that inside

the region |x±| > 1 there is a unique solution with real p and q, and it exists if and only

if20

|p| < pcr , 0 ≤ q < log
2g +

√
2
√

1 + 4g2 − 2
√

1 + 4g2 − 1
. (7.12)

The second solution with q = q+ lies outside the region with |x±| > 1 but inside the region

with −ω2/2i < Im(z) < ω2/2i; the latter maps onto the complex p-plane, see section 4.

Both solutions have the same values of all global conserved charges Qr = qr(z1) + qr(z2) =
i

r−1

[
(x+

1 )1−r − (x−
2 )1−r

]
because x+

1 and x−
2 are the same on both solutions.

We see that if we choose the physical region to be the one with |x±| > 1 then there is a

unique bound state with |p| < pcr. This region, however, does not cover the whole complex

p-plane. One the other hand, if the physical region is the half of the torus corresponding

to the p-plane, then there are two solutions with the same energy and other conserved

charges. Finally, if one considers solutions on the z-torus then there are four solutions but

only two of them have positive energy.

Continuing above the critical value, |p| > pcr, two solutions (7.11) acquire imaginary

parts and become complex-conjugate to each other, or, equivalently, the real parts of p1

and p2 become different. Thus, we see that the BPS bound states naturally split into two

families depending on whether the total momentum is below (the first family) or above (the

second family) the critical value pcr.

The two complex conjugate roots give two different solutions beyond criticality:

p±1 =
p

2
± Im q − iRe q , p±2 =

p

2
∓ Im q + iRe q , Re q > 0 . (7.13)

We can choose either (p+
1 , p+

2 ) or (p−1 , p−2 ) as a possible solution of the BPS condition (7.6).

Note that the second solution is the complex conjugate of the first one. A remarkable fact

to be proven below is that both solutions lie precisely on the boundary of the region defined

by the curves |x±| = 1.

Now if we adopt the physical region (sheet) to be |x±| > 1 with the boundary |x±| = 1,

then it should contain only one solution from the second BPS family. Indeed, we do not

19The solutions with negative q correspond to bound states of anti-particles with negative energy.

20The energy of the corresponding bound state is E <
q

2
p

1 + 4g2 + 2 .
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Figure 5: Two-particle bound states of string theory. Figure a) describes the first BPS family

corresponding to p < pcr. The green curves are Im(x−) = 0 for Im(z) < 0 and Im(x+) = 0 for

Im(z) > 0. For any p < pcr there are two solutions: the first one is represented by the continuous

curves B1OC1 (1st particle) and B2OC2 (2nd particle), the second one corresponds to the dashed

curves A1B1 ∪ C1D1 (1st particle) and A2B2 ∪ C2D2 (2nd particle). Figure b) describes the

second BPS family corresponding to p > pcr. Again, for any p > pcr there are two solutions

B2C2 ∪A1B1 ∪C1D1 and B1C1 ∪A2B2 ∪C2D2. Figure c) represents one of the four possibilities

to smoothly connect solutions from the first and the second BPS families. Here the variable z1 of

the 1st particle is on the curve A1B1OC1D1. When z1 runs along the curve from A1 to D1 the

real part of the momentum Re(p1) increases monotonically from −π to π. At the same time, the

variable z2 corresponding to the 2nd particle encloses the curve A2B2OC2D2.

expect the doubling of the number of BPS bound states moving beyond the critical point.

The second solution can be then naturally interpreted as lying on the boundary of another

(unphysical) sheet joint to the physical one through the cut. It is unclear however what

is the precise origin for such an asymmetry. A possible explanation would be the absence

of parity invariance of the string sigma-model but a concrete implication of this fact is

unknown to us.

To visualize the singularities of the string S-matrix and also to verify that energy is real

for the second BPS family, it is instructive to analyze eqs. (7.5) in terms of the generalized

rapidity variables z1 and z2 associated to the first and the second particles, respectively.

It is not hard to see that the first family of the BPS states corresponds to imposing the

reality condition z∗2 = z1. In this case, eqs. (7.5) are equivalent to

Im(x−
1 ) = 0 or |x−

1 | = 1 , (7.14)

where the first equation defines the first BPS family. Solving the bound state equation
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for z1, one gets a curve in the torus. The part of the curve that lies inside the region

|x±| > 1 is represented in figure 5 by the green curve B1OC1, and the corresponding

momentum p1 has Im(p1) = −q−. The variable z2 = z∗1 of the second particle runs along

another (conjugate) green curve B2OC2, which can be also viewed as describing solutions

of the equation Im(x+
2 ) = 0 for z2. The dashed curves on figure 5a, which are outside

the region |x±| > 1, represent solutions of the equations Im(x−
1 ) = Im(x+

2 ) = 0 for z1, z2

corresponding to the momentum p1 with Im(p1) = −q+.

To describe the second family of the BPS states corresponding to the complex values

of q one has to take

z2 = −z∗1 +
ω1

2
+

ω2

2
. (7.15)

In this case

x+(z2) = x+

(
− z∗1 +

ω1

2
+

ω2

2

)
=

1

x+(z∗1)
=

1

[x−(z1)]∗
, (7.16)

where we have used the properties of Jacobi elliptic functions under the shifts by quarter-

periods. Hence, due to the BPS equation x−
1 = x+

2 , the points z1 and z2 lie on the curves

|x−| = 1 and |x+| = 1, respectively.

As was discussed above, there are two different ways to choose the second BPS family

which is equivalent to deciding what is the physical sheet. Consider the point z1 correspond-

ing to the first particle, figure 5c. When it moves along the curve B1OC1 corresponding

to the first BPS family and reaches, e.g., the point C1 then there are two possibilities to

continue its path along the curve |x−| = 1: either one moves along C1D1 or along C1B1.

In the case when z1 moves along the curve C1D1, the second point z2 follows the path

C2D2. In the opposite situation, when z1 moves along C1B1, the point z2 follows C2B2.

Similar discussion applies to continuing the first BPS family beyond B1. Obviously, for

the second family z1 and z2 are not complex conjugate anymore, rather they obey the

relation (7.15). The bound state energy H = ig(x−
2 − x+

1 ) − 2 is however real, as one can

also check by using the shift/reflection properties of the elliptic functions.

Our discussion reveals that there are four special points on the z-plane

zcr = ±ω1

4
± ω2

4
(7.17)

where both equations Im(x−
1 ) = 0 and |x−

1 | = 1 or Im(x+
2 ) = 0 and |x+

2 | = 1 are simulta-

neously satisfied. These are the critical points where two BPS families meet.

The most transparent description of the bound states is achieved in terms of the

rapidity variable u introduced in section 4, rather than in terms of momentum p or the

variable z. Indeed, in terms of u eq. (7.3) becomes

(
x−

1 − x+
2

) (
1 − 1

x−
1 x+

2

)
= u1 − u2 −

2i

g
= 0 , (7.18)

i.e. the rapidity variables u1 and u2 of the first and the second particle lie on a straight line

running parallel to the imaginary axis. Moreover, for the first BPS family the variables
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u1,2 are subject to the following conjugation rule u∗
1 = u2 which, together with eq. (7.18)

allows one to conclude that

u1,2 = u0 ±
i

g
, u0 ∈ R . (7.19)

This is a typical pattern of “Bethe string”. One can further see that for the first BPS

family corresponding to p ≤ pcr the variable u0 is restricted to satisfy

|u0| ≥ 2 , u1,cr = ±2 +
i

g
, (7.20)

where u1,cr is a critical value of rapidity u1 for which the first BPS family ceased to exist.

Under the map to the u-plane the four critical points zcr are mapped to the four branch

points on the u-plane (see figure 3 in section 4)

ucr = ±2 ± i

g
. (7.21)

Let us now turn to the second BPS family. First, by using eq. (4.5) and the properties

of the elliptic functions, we derive

u∗
1 = x−

(
− z2 +

ω1

2
+

ω2

2

)
+

1

x−
(
− z2 + ω1

2 + ω2
2

) +
i

g
= u2 . (7.22)

We see that for both families of BPS states the conjugation rule for u’s is the one and the

same. By this reason, a solution to the BPS condition is always represented by the Bethe

string (7.19). However, one finds that for the second family a solution exists for |u0| ≤ 2

only. Thus, on the u-plane both families of BPS states admit a uniform description in

terms of the Bethe string with u0 running over the whole real line.

7.2 Multi-particle bound states

The consideration of the two-particle bound states can be easily generalized to the M -

particle case. The corresponding set of bound state equations reads [50]

x−
j − x+

j+1 = 0, j = 1, . . . ,M . (7.23)

The total momentum of a state satisfying these equations is given by

eip =
x+

1

x−
1

x+
2

x−
2

· · · x+
M

x−
M

=
x+

1

x−
M

,

and the energy of the state is

HM =
M∑

i=1

(
−1 − igx+

i + igx−
i

)
= −M − igx+

1 + igx−
M . (7.24)

Both the energy and momentum depend on the values of x+
1 and x−

M only. Since the

energy is real, x−
M must be the complex conjugate of x+

1 : (x−
M )∗ = x+

1 . In fact, a simple
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but important observation is that any global conserved charge of a state obeying (7.23)

depends only on x+
1 and x−

M :

Qr =

M∑

i=1

qr(zi) =

M∑

i=1

i

r − 1

[
(x+

i )1−r − (x−
i )1−r

]
=

i

r − 1

[
(x+

1 )1−r − (x−
M )1−r

]
.

Another important consequence of eqs. (7.23) is that the coordinates x+
1 and x−

M satisfy

the following quadratic constraint

x+
1 +

1

x+
1

− x−
M − 1

x−
M

=
2M

g
i . (7.25)

This is the same constraint as the one satisfied by x± (4.3) with g → g/M , and we get

immediately the dependence of x+
1 and x−

M on the total real momentum p21

x+ =
ei p

2

2g sin p
2

(
M +

√
M2 + 4g2 sin2 p

2

)
,

x− =
e−i p

2

2g sin p
2

(
M +

√
M2 + 4g2 sin2 p

2

)
,

(7.26)

and, using (7.24), the BPS energy formula

H2
M = M2 + 4g2 sin2 p

2
.

Moreover, we see that the set of global conserved charges Qr is the same for any solution

of (7.23) with a given total momentum p.

It is also easy to see that the number of different solutions with a real momentum p

and positive energy is equal to 2M−1 because for a given x+ there are two different x−

solving the constraint (4.3), see the diagram below for M = 4

x+
1 −→





x−
1 = x+

2 −→





x−
2 = x+

3 −→
{

x−
3 = x+

4

x−
3 = x+

4

x−
2 = x+

3 −→
{

x−
3 = x+

4

x−
3 = x+

4

x−
1 = x+

2 −→





x−
2 = x+

3 −→
{

x−
3 = x+

4

x−
3 = x+

4

x−
2 = x+

3 −→
{

x−
3 = x+

4

x−
3 = x+

4





−→ x−
4

To have all these solutions one would have to allow the parameters zi of the particles to be

anywhere on the z-torus, in particular, some of them would be in the anti-particle region

with |x±| < 1.

21In general for a given momentum p there are two solutions of the constraint (7.25), and there could be

any sign in front of the square root in (7.26). The positive sign guarantees the positivity of the energy.
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However, if we require that all the constituent particles of the bound state belong to

the region |x±| > 1 then we are left with a unique solution because for a given x+ only one

solution for x− satisfies the condition |x−| ≥ 1. For M even it is also necessary to specify

what parts of the boundaries |x±| = 1 belong to the region because if the momentum of a

bound state exceeds a critical, g− and M -dependent, value then there are several solutions

of the bound state equations with |x−
M/2| = |x+

M/2+1| = 1.

Finally, if the parameters zi of the particles belong to the half of the torus corresponding

to the complex p-plane, then one can show that for any M there are two solutions of the

bound state equations.

Just as for the case of two-particle bound states, the simplest description of M -particle

bound states is provided by the u-plane where a solution is given by the Bethe string

uj = u0 + (M − 2j + 1)
i

g
, j = 1, . . . ,M . (7.27)

We can choose one and the same map of the u-plane with the cuts described in section 4

onto the region of the z-torus with |x±| > 1 for all the particles. It is then obvious that

for a given momentum p there is just a single M -particle bound state that falls inside the

physical region. Its structural description however becomes rather involved.

7.3 Finite-size corrections to the bound states

It is of interest to analyze finite-size corrections to the energy of the BPS bound states,

and to see what restrictions on the dressing factor could be derived from the condition that

the energy corrections are real. To this end, we consider two-particle states in the su(2)

sector described by the following two equations, see (7.2)

(
x+

1

x−
1

)J

= Σ12
x+

1 − x−
2

x−
1 − x+

2

1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2

,

(
x+

1 x+
2

x−
1 x−

2

)J

= 1 , (7.28)

where Σ12 =
x−
1 x+

2

x+
1 x−

2

σ12 is the unitary factor that appeared in the splitting (5.25) of the scalar

factor, and J is one of the global charges corresponding to the isometries of the five-sphere.

The variables x±
i also satisfy the constraint (4.3). These equations are supposed to be valid

asymptotically for large values of J , and have to be modified for finite J .

We will analyze these equations for large values of J in the vicinity of a bound state

satisfying the bound state equation x−
1 = x+

2 and having a fixed total momentum p = 2πm
J

where m is an integer. The quantization condition for the total momentum follows from

the second equation in (7.28).

Let x±
i denote the values of x±

i satisfying the bound state equation and the second

equation in (7.28). Then,
(

x
−
1

x
+
1

)J

∼ e−qJ exponentially decreases at large J , and we can

look for a solution of the form

x±
i = x±

i

(
1 +

(
x−

1

x+
1

)J

y±i

)
.
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Expanding the equations (7.28) and the constraint (4.3) in powers of y±i , we find a system

of linear equations for y±i . The solution of the system is given below

y−1 =
4Σ12(ig(x−

2 − x+
2 ) + x−

2 x+
2 )

(
2ix+

1 x+
2 + g

(
x+

1

(
(x+

2 )2 + 1
)
− 2x+

2

))

g2(gx−
2 − (g + 2ix−

2 )x+
1 )

(
(x+

2 )2 − 1
)2

y+
1 =

4Σ12x
+
1 (ig(x−

2 − x+
2 ) + x−

2 x+
2 )

g(gx−
2 − (g + 2ix−

2 )x+
1 )

(
(x+

2 )2 − 1
)

y−2 = − 4iΣ12x
−
2 (g(x+

1 − x+
2 ) + ix+

1 x+
2 )

g((g + 2ix−
2 )x+

1 − gx−
2 )

(
(x+

2 )2 − 1
)

y+
2 =

4Σ12(g(x+
1 − x+

2 ) + ix+
1 x+

2 )
(
gx−

2 (x+
2 )2 − 2(g + ix−

2 )x+
2 + gx−

2

)

g2(−ig(x−
2 − x+

1 ) − 2x−
2 x+

1 )
(
(x+

2 )2 − 1
)2 ,

where Σ12 is evaluated on the solution to the bound state equation. The leading correction

to the energy of the state is easily found by expanding

E = E1 + E2 , Ei = 1 +
ig

x+
i

− ig

x−
i

= −1 − igx+
i + igx−

i . (7.29)

By using Ei = 1 + ig

x+
i

− ig

x−
i

, we obtain

δE =

(
x−

1

x+
1

)J

Σ12
4i(x−

2 (2x+
1 − x+

2 ) − x+
1 x+

2 )

(g(x−
2 − x+

1 ) − 2ix−
2 x+

1 )
(
(x+

2 )2 − 1
) . (7.30)

On the other hand by using Ei = −1 − igx+
i + igx−

i , we get

δE =

(
x−

1

x+
1

)J

Σ12
4ix−

2 x+
1 x+

2 (x−
2 + x+

1 − 2x+
2 )

(g(x−
2 − x+

1 ) − 2ix−
2 x+

1 )
(
(x+

2 )2 − 1
) . (7.31)

Even though the expressions look different they coincide on solutions to the bound state

equation. In what follows we will be using the simpler eq. (7.31). Note also that the

perturbation theory breaks down at p = pcr. Due to the quantization condition for the

momentum p it may happen only at special values of the coupling constant g depending

on m/J .

It is clear that the energy correction cannot be real for any choice of the dressing factor

Σ12. The imaginary part of the correction depends on the branch of the bound state under

consideration.

In the first case with Im(x−
1 ) = Im(x+

2 ) = 0 and the total momentum smaller than the

critical value (7.10), the parameters x±
i satisfy the complex conjugation rule (x±

1 )∗ = x∓
2 ,

and we get

δE − δE∗ =

((
x−

1

x+
1

)J

Σ12 −
(

x+
2

x−
2

)J

Σ∗
12

)
4ix−

2 x+
1 x+

2 (x−
2 + x+

1 − 2x+
2 )

(g(x−
2 − x+

1 ) − 2ix−
2 x+

1 )
(
(x+

2 )2 − 1
) .

Taking into account that
(

x
−
1

x
+
1

)J

=
(

x
+
2

x
−
2

)J

, we conclude that in this case the correction is

real only if the dressing factor is real Σ12 = Σ∗
12 . This property of the dressing factor can

be easily shown by using the representation (5.22) for the dressing phase.
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In the second case with |x−
1 | = |x+

2 | = 1 and the total momentum exceeding the

critical value (7.10), the parameters x±
i satisfy the complex conjugation rule (x+

1 )∗ = x−
2 ,

(x−
1 )∗ = 1/x+

2 , and we obtain

δE − δE∗ =

=
4x−

2 x+
1

(
Σ∗

12(x
+
2 x−

2 )−J(2 − (x−
2 + x+

1 )x+
2 ) − Σ12(x

+
1 )−J(x+

2 )J+1(x−
2 + x+

1 − 2x+
2 )

)

(ig(x−
2 − x+

1 ) + 2x−
2 x+

1 )
(
(x+

2 )2 − 1
) .

We see that the imaginary part of the correction would vanish only if

Σ∗
12 = Σ12(x

+
2 )2J+1 (x−

2 + x+
1 − 2x+

2 )

(2 − (x−
2 + x+

1 )x+
2 )

.

Since the last equation depends on J and on a particular bound state solution, it cannot

be satisfied for any choice of the dressing factor. The complex energy of the state would

mean that the Hamiltonian of the model is not hermitian for finite J .

One might conclude from this result that the S-matrix poles with |x−
1 | = |x+

2 | = 1 are

spurious and do not correspond to bound states, and, therefore, should be omitted. That

would mean, however, that for any value of the total momentum the bound states satisfying

the equations Im(x−
1 ) = Im(x+

2 ) = 0 would disappear as soon as the coupling constant g

reaches a critical (momentum-dependent) value. This seems to contradict to the statement

that the bound states are BPS. We believe that such a conclusion might be erroneous and

the result above indicates, in fact, that the asymptotic Bethe ansatz cannot be used to

analyze the finite-size corrections to the energy of bound states with the total momentum

exceeding the critical value (7.10).

To show that this is indeed the case, let us recall that, as was shown in [38], at large

values of the string tension g and the charge J the dispersion relation receives finite-

size corrections of the order e−J/(g sin p/2). On the other hand, the energy correction we

computed above is of the order e−qJ where q is the imaginary part of the momentum p2.

It depends on the total momentum p and the string tension g. By using eq. (D.3), it is not

difficult to determine the large g dependence of the momenta p1 and p2 of a bound state

p1 =
cos p

2

2g2 sin3 p
2

− i

g sin p
2

+ O
(

1

g3

)
, p2 = p − cos p

2

2g2 sin3 p
2

+
i

g sin p
2

+ O
(

1

g3

)
. (7.32)

The second solution of eq. (7.8) (with q > 0) is related to (7.32) as p1 → p∗2 , p2 → p∗1 that is

one exchanges the real parts of momenta pi. A surprising result of the computation is that

q is equal to 1
g sin p

2
, and, therefore, e−qJ is exactly equal to the magnitude of the finite-size

correction to the dispersion relation. That means that computing the finite J correction to

the energy of such a bound state one has to take into account the necessary modifications of

the asymptotic Bethe ansatz. As a result of these modifications, one should be able to get

a real finite-size correction to the energy of a bound state carrying momentum exceeding

the critical value. In fact, this would be a non-trivial check of finite J “Bethe” equations.

The analysis performed above raises the question if one can use the asymptotic Bethe

ansatz to compute the corrections to the energy of the bound states with momenta smaller
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than the critical value. At large g we can again compare the value of q with 1
g sin p

2
. If q is

less than 1
g sin p

2
then the energy correction (7.31) is bigger than the correction due to finite

J modifications of the asymptotic Bethe ansatz, and we can trust (7.31). Since pcr = 2/
√

g

at large values of g one should consider a bound state with momentum p of the order 1/
√

g.

The large g dependence of the momenta p1 and p2 of a bound state is easily found by using

eq. (D.4)

p1 =
p

2
− 2i

1 ±
√

1 − p4g2

16

gp
+ · · · , p2 =

p

2
+ 2i

1 ±
√

1 − p4g2

16

gp
+ · · · , (7.33)

leading for p < pcr to the following two real solutions for q

q± = 2
1 ±

√
1 − p4g2

16

gp
. (7.34)

Comparing these values with 1
g sin p

2
≈ 2

gp , we see that q− < 2
gp and q+ > 2

gp . Thus, the

asymptotic Bethe ansatz can be used to analyze finite J corrections to the energy of a

bound state with momentum smaller than pcr for the bound state with q− only.

Actually, the fact that the energy correction (7.31) to the bound state with q+ is

smaller than the corrections due to finite J modifications of the asymptotic Bethe ansatz

raises a question if these solutions correspond to the actual bound states. It may happen

that finite J Bethe equations would not have any solution that would reduce to the solution

with q+ in the limit J → ∞.

A similar analysis can also be performed for small values of g. Then we expect that

the finite J effects (in gauge theory they are due to the wrapping interactions) become

important at order g2J , and therefore we could trust the asymptotic Bethe ansatz and the

energy correction (7.31) only if q < −2 log g.

The leading small g dependence of q of the bound state solutions with the momentum

smaller than pcr is given by eqs. (D.5), (D.6)

q+ = −2 log g + · · · , q− = − log cos
p

2
+ · · · . (7.35)

We see immediately that again only the solution with the smaller imaginary part of the

momentum q− satisfies the necessary condition. The energy correction to the state with

q+ is of order g2J that is exactly the order of wrapping interactions, and the asymptotic

Bethe ansatz again breaks down for the state.

Finally, the leading small g dependence of q of the bound state solutions with the

momentum exceeding pcr is given by (D.7)

q± = − log
g

2
± iα + · · · , (7.36)

where α is related to the momentum p as follows p = π − 2g cos α .

We see that the real part of q± is smaller than −2 log g, and therefore one could

conclude that one might use the asymptotic Bethe ansatz for the states in this regime.

This, however, leads to the problem of the complex energy of these states discussed above.
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As before the only resolution of the problem we see is the breakdown of the asymptotic

Bethe ansatz. This would imply, however, that for these states the wrapping interactions

become important already at the order gJ . The fact that in gauge theory these states are

not dual to gauge-invariant operators does not seem to be important for this conclusion.

One could for example scatter a bound state carrying momentum p = π which always

exceeds the critical momentum pcr with an elementary one carrying momentum −π so that

the total momentum would be zero, and such a state would be dual to a gauge-invariant

operator. We would still expect the finite J corrections to this state to be of the order

gJ . Another puzzling property of the states with p > pcr is that in the limit g → 0 the

states are pushed away from the spectrum because pcr = π, and cannot be seen in the

perturbative gauge theory.

8. Bound states of the mirror model

Let us now consider in a similar fashion bound states of the mirror model. In this case one

should consider mirror particles of type A†
33̇

.

We begin our consideration with two-particle bound states, and let the complex mo-

menta of the two particles be

p̃1 =
p

2
− iq , p̃2 =

p

2
+ iq , Re q > 0 ,

where p is the total momentum of the mirror bound state.

The first equation in (6.6) takes the form

eipR/2eqR = σ12
x−

1 − x+
2

x+
1 − x−

2

1 − 1
x+
1 x−

2

1 − 1
x−
1 x+

2

, (8.1)

where we set all auxiliary roots to 0. Assuming that the dressing factor does not vanish,

we conclude that for Re q > 0 and in the limit R → ∞ the following bound state equation

should hold

x+
1 − x−

2 = 0 . (8.2)

The second factor in the denominator of the Bethe equation (8.1) may also vanish but the

energy of the corresponding state does not satisfy the BPS condition. We expect that, just

as a similar factor in the string theory, the pole due to this factor does not correspond to

a bound state.

By using eqs. (2.15) which express x± as functions of p̃, we find that eq. (8.2) is

equivalent to

−4g2q2 + t3 − 2q2t (2 − t) + q4t = 0 , (8.3)

where t ≡ 1 + p2

4 . This equation gives the following two solutions with a positive real part

of q:

q =

√
1 +

g2

t
±

√
1 − t +

g2

t
=

√

1 +
4g2

4 + p2
±

√

−p2

4
+

4g2

4 + p2
. (8.4)
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Solutions for q are real provided the expression under the square root is nonnegative, and

this implies the following restriction on the total momentum of the bound state

|p| ≤ pcr ≡
√

2

√
−1 +

√
1 + 4g2 . (8.5)

For an exact inequality we have two positive solutions q±, and when the bound on the

momentum is saturated the solution is obviously unique22

q− < qcr < q+ , qcr =
1√
2

√
1 +

√
1 + 4g2 . (8.6)

It is interesting to notice that the dependence of q± on the momentum of the bound state

is smoother at p = 0 than the one for string theory bound states. We see from eq. (8.4)

that q− reaches its minimum, and q+ reaches its maximum at p = 0

qmin
− =

√
1 + g2 − g , qmax

+ =
√

1 + g2 + g , p = 0 . (8.7)

In string theory the corresponding values are 0 and ∞.

To find what curves in the z-torus correspond to the two solutions with real q we take

into account that in this case p̃1
∗ = p̃2, and the reality condition for x± in the mirror theory

is
(
x±

1

)∗
= 1/x∓

2 . Thus the bound state equation (8.2) reduces to the following equivalent

conditions

|x+
1 | = 1 ⇐⇒ |x−

2 | = 1 ,

being represented by the two curves in the z-torus that bound the yellow region with

|x+| < 1 , |x−| > 1 in figure 1. Note that the curves are symmetric about the horizontal

line passing through the point z = ω2
2 . Let us recall that hermitian conjugation in the

mirror theory is defined with respect to this line, see section 4. It is not difficult to check

that the parts of the curves |x+
1 | = 1 , |x−

2 | = 1 that are inside the region Im(x±) < 0

correspond to the smaller root q− of eq. (8.2). The other parts of the curves correspond to

the second solution with q = q+, see figure 1. Just as it was for string theory bound states,

both solutions have the same values of all global conserved charges Qr = qr(z1) + qr(z2) =
i

r−1

[
− (x−

1 )1−r + (x+
2 )1−r

]
.

We see that if we want to have only one bound state with |p| < pcr in a physical region,

then we should choose the physical region to be the one with Im(x±) < 0 but not the one

bounded by the curves |x±| = 1 as it is for string theory. We will see in a moment that

the region Im(x±) ≤ 0 also contains bound states with |p| > pcr described by the solutions

with complex q.

Above the critical value, |p| > pcr, the two solutions (8.4) acquire imaginary parts and

become complex conjugate to each other. It is convenient to denote the corresponding

solutions as follows

q± =

√

1 +
4g2

4 + p2
± i

p

2

√
1 − 16g2

p2(4 + p2)
. (8.8)

22The energy of the bound state is eEcr = 2 arcsinh
√

2
g

q
1 + 1

p
1 + 4g2 .
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We see that the real part of q± is a decreasing function of p, and its minimum value is 1.

On the contrary the imaginary part of q± is an increasing function of p and it behaves as

±p/2 at large values of p. As a result, the two complex momenta

p̃1
± =

p

2
± Im q − iRe q , p̃2

± =
p

2
∓ Im q + iRe q , Re q > 0 ,

have the following large p behavior

p̃1
+ = p − i , p̃2

+ = i ; p̃1
− = −i , p̃2

− = p + i .

A remarkable fact is that both solutions lie precisely on the boundary of the region

Im(x±) ≤ 0. To see this we notice that, just as it was for string theory bound states, the

coordinates z1 and z2 of the solutions with the complex values of q are related by eq. (7.15)

z2 = −z∗1 +
ω1

2
+

ω2

2
. (8.9)

Then, one can easily show that

x−(z2) = x−
(
− z∗1 +

ω1

2
+

ω2

2

)
= x−(z∗1) = [x+(z1)]

∗ ,

and, therefore, the bound state equation x+
1 = x−

2 is equivalent to Im(x+(z1)) =

Im(x−(z2)) = 0. We plot the corresponding curves in figure 6.

Thus, we have shown that these solutions lie on the boundary of the region Im(x±) ≤ 0,

and, therefore, the region contains bound states with any value of the total momentum

and could be considered as the physical one for the mirror model. It is also necessary to

specify what part of the boundary of the region Im(x±) ≤ 0 belongs to the physical region,

and this can be done by choosing properly the cuts in the u-plane where the bound state

equation reduces to

x+
1 − x−

2 = 0 =⇒ u2 − u1 =
2i

g
.

As was discussed in section 4, eqs. |x+
1 | = |x−

2 | = 1 describing a bound state with the

momentum not exceeding the critical value pcr and with a real q give a Bethe string

solution with the real part of u lying in the interval [−2, 2]

u1,2 = u0 ∓
i

g
, − 2 ≤ u0 ≤ 2 .

On the other hand, values of u0 lying outside the interval [−2, 2] correspond to solutions of

eqs. Im(x+
1 ) = Im(x−

2 ) = 0. The momentum p̃ = p̃(u) is a multi-valued function of u, and

one should choose a proper branch of the function to get the right values of the momenta

p̃1 , p̃2 of the bound state. This fixes the cuts in the u-plane which run from ±∞ to ±2∓ i
g ,

and also the boundaries of the region Im(x±) ≤ 0 in the z-plane which is mapped onto the

u-plane with these cuts.

The discussion of bound states of M particles of type A†
33̇

basically repeats the one in

section 7. One finds a system of equations

x+
j − x−

j+1 = 0 , j = 1, . . . ,M − 1 . (8.10)
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Figure 6: Bound states of the mirror theory. Figure a) represents the first BPS family: for any p

with |p| < pcr there are two solutions corresponding to q− (the curves B1C1 for the 1st particle and

B2C2 for the 2nd one, respectively) and to q+ (the curves A1B1 ∪ C1D1 for the 1st particle and

A2B2 ∪C2D2 for the 2nd one, respectively). Figure b) represents the second BPS family which is

also doubly degenerate: it is given by either A1B1 ∪ C1D1 ∪ B2D2 or by B1C1 ∪ A1B2 ∪ D1C2.

Figure c) corresponds to one of the four possibilities to connect the first and the second BPS

family: when the variable z1 of the 1st particle runs along the curve A1B1C1D1 the real part of

its momentum increases from −∞ to +∞. At the same time, the variable z2 of the 2nd particle

encloses the curve A2B2C2D2.

In terms of the variable u the Bethe string solution reads as

uj = u0 − (M − 2j + 1)
i

g
, j = 1, . . . ,M , (8.11)

and has the energy

E = log
x−

1

x+
M

= 2arcsinh
1

2g

√
M2 + p̃2 , (8.12)

where p̃ = p̃1 + . . . + p̃M is a total (real) momentum of the bound state.

Depending on a choice of the physical region, the system (8.10) could have one, two

or 2M−1 solutions. All solutions have the same global conserved charged. They behave,

however, differently for very large but finite values of R, and the solutions which are not

in the region Im(x±) < 0 show various signs of pathological behavior. In particular, they

might have complex finite R correction to the energy, or the correction would exceed the

correction due to finite R modifications of the Bethe equations thus making the asymptotic

Bethe ansatz inapplicable.
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A. Gauge-fixed lagrangian

The Lagrangian density of the gauge-fixed sigma-model in the generalized a-gauge [56, 57]

can be written in the following form [26]

L = −
√

GϕϕGtt

(1 − a)2Gϕϕ − a2Gtt

√
W +

a Gtt + (1 − a) Gϕϕ

(1 − a)2Gϕϕ − a2Gtt
, (A.1)

where

W ≡ 1 − (1 − a)2Gϕϕ − a2Gtt

2

[(
1 +

1

GϕϕGtt

)
∂αX · ∂αX (A.2)

−
(

1 − 1

GϕϕGtt

)(
Ẋ · Ẋ + X ′ · X ′

)]

+
((1 − a)2Gϕϕ − a2Gtt)

2

2GϕϕGtt

(
(∂αX · ∂αX)2 − (∂αX · ∂βX)2

)
.

Here X = (yi, zi), where yi, i = 1, . . . , 4 are four fields parametrizing five-sphere, while zi

are fields parametrizing four directions in AdS5. The fields X in the Lagrangian above are

contracted with the help of the metric

ds2 = −Gttdt2 + Gzzdz2 + Gϕϕdϕ2 + Gyydy2 .

Here

Gtt =

(
1 + z2

1 − z2

)2

, Gzz =
1

(
1 − z2

)2 , Gϕϕ =

(
1 − y2

1 + y2

)2

, Gyy =
1

(
1 + y2

)2 ,

where we had used the notation z2 ≡ zizi and y2 ≡ yiyi.

B. One-loop S-matrix

Here we describe the properties of the “one-loop” S-matrix which is obtained from the

S-matrix (3.24) upon taking the limit g → 0. We will work in the elliptic parametrization

discussed in section 4.1. According to eq. (4.18), in this limit Jacobi elliptic functions de-

generate into the corresponding trigonometric ones and we find the following trigonometric

S-matrix:

S(z1, z2) = e−i(z1−z2) cot z1 − cot z2 + 2i

cot z1 − cot z2 − 2i

(
E1

1 ⊗ E1
1 + E2

2 ⊗ E2
2 + E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1

)
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−e−i(z1−z2) 2i

cot z1 − cot z2 − 2i

(
E1

1 ⊗ E2
2 + E2

2 ⊗ E1
1 − E2

1 ⊗ E1
2 − E1

2 ⊗ E2
1

)

−
(

E3
3 ⊗ E3

3 + E4
4 ⊗ E4

4 + E3
3 ⊗ E4

4 + E4
4 ⊗ E3

3

)

− 2i

cot z1 − cot z2 − 2i

(
E3

3 ⊗ E4
4 + E4

4 ⊗ E3
3 − E4

3 ⊗ E3
4 − E3

4 ⊗ E4
3

)

+eiz2
cot z1 − cot z2

cot z1 − cot z2 − 2i

(
E1

1 ⊗ E3
3 + E1

1 ⊗ E4
4 + E2

2 ⊗ E3
3 + E2

2 ⊗ E4
4

)

+e−iz1
cot z1 − cot z2

cot z1 − cot z2 − 2i

(
E3

3 ⊗ E1
1 + E4

4 ⊗ E1
1 + E3

3 ⊗ E2
2 + E4

4 ⊗ E2
2

)

+e−i(z1−z2) 2i

cot z1 − cot z2 − 2i

(
E3

1 ⊗ E1
3 + E4

1 ⊗ E1
4 + E3

2 ⊗ E2
3 + E4

2 ⊗ E2
4

)

+e−i(z1−z2) 2i

cot z1 − cot z2 − 2i

(
E1

3 ⊗ E3
1 + E1

4 ⊗ E4
1 + E2

3 ⊗ E3
2 + E2

4 ⊗ E4
2

)
.

The relations between the z-variable, momentum and the rescaled rapidity u → gu trans-

form in the limit g → 0 into

p = 2z , u = cot z = cot
p

2
. (B.1)

Surprisingly enough, this S-matrix cannot be written in the difference form, i.e. as a func-

tion of one variable being the difference of a properly introduced spectral parameter. By

construction, this S-matrix satisfies the usual Yang-Baxter equation

S23(z2, z3)S13(z1, z3)S12(z1, z2) = S12(z1, z2)S13(z1, z3)S23(z2, z3) , (B.2)

as one can also verify by direct calculation. On the other hand, at one-loop there is another

“canonical” S-matrix which is a linear combination of the graded identity and the usual

permutation:

Scan
12 =

u1 − u2

u1 − u2 − 2i
Ig
12 +

2i

u1 − u2 − 2i
P12 . (B.3)

This S-matrix satisfies the same Yang-Baxter equation (B.2).

The results of [47] imply that the two one-loop S-matrices, (B.1) and (B.3) are related

through the following transformation

Scan(z1, z2) = U2(z1)

[
V1(z1)V2(z2)S12(z1, z2)V

−1
1 (z1)V

−1
2 (z2)

]
U−1

1 (z2) , (B.4)

where we have introduced the diagonal matrices

U(z) = diag(eiz, eiz , 1, 1) , (B.5)

V (z) = diag(ei z
4 , ei z

4 , e−i z
4 , e−i z

4 ) . (B.6)

The transformation by V is just a gauge transformation which always preserves the Yang-

Baxter equation. On the other hand, transformation by U is a twist, that generically
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transforms the usual Yang-Baxter equation into the twisted one and vice versa [47]. Indeed,

Scan
12 is nothing else but the one-loop limit of the spin chain S-matrix [9]; the latter obeys

the twisted Yang-Baxter equation [47]. Note also that the twist U does not belong to the

symmetry group SU(2) × SU(2) of the string S-matrix.

To understand why at one loop the Yang-Baxter equation is preserved under the twist-

ing, we first write the Yang-Baxter equation for Scan by using the relation23 (B.3)

U3(z2)S23U
−1
2 (z3)U3(z1)S13U

−1
1 (z3)U2(z1)S12U

−1
1 (z2) =

= U2(z1)S12U
−1
1 (z2)U3(z1)S13U

−1
1 (z3)U3(z2)S23U

−1
2 (z3) , (B.7)

which can be reshuffled as follows

U3(z2)S23U2(z1)U3(z1)S13U
−1
1 (z3)U

−1
2 (z3)S12U1(z2) =

= U2(z1)U3(z1)S12U
−1
1 (z2)S13U3(z2)S23U

−1
1 (z3)U

−1
2 (z3) . (B.8)

It is clear now that we will get the usual Yang-Baxter equation for S provided it obeys the

following relation

[S,U ⊗ U ] = 0 , (B.9)

where U is an arbitrary diagonal matrix. One can easily verify that both S-matrices, (B.1)

and (B.3), do indeed satisfy this relation. At higher orders in g the relation (B.9) does

not hold anymore. The corresponding “all-loop” S-matrix (3.24) satisfies only a weaker

condition

[S,G ⊗ G] = 0 , G ∈ SU(2) × SU(2) , (B.10)

which is nothing else but the invariance condition for the string S-matrix. As a consequence,

the Yang-Baxter equation is preserved by the twist transformation only at the one-loop

order.

As a final remark, we note that it would be interesting to understand how the derivation

of the Hirota difference equations for the canonical S-matrix [72] could be extended to the

“twisted” S-matrix (B.1). This might shed some light on construction the fusion procedure

for the all-loop S-matrix (3.24).

C. BAE with nonperiodic fermions

C.1 Bethe wave function and the periodicity conditions

In any asymptotic domain Q with xQ1 ≪ xQ2 ≪ · · · ≪ xQN
where N ≡ KI and Q1, . . . ,QN

is a permutation of 1, 2, . . . , N , the wave function of N particles with flavors i1, i2, . . . , iN
can be written as a superposition of plane waves with momenta p1 > p2 > · · · > pN

ΨQ
i1···iN (x1, . . . , xN ) =

∑

P
AP|Q

i1···iN ei pP ·xQ , (C.1)

23The gauge transformation by the matrix V decouples from the Yang-Baxter equation.
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where the sum runs over all permutations of the momenta pi. The scalar product pP · xQ
is defined as pP · xQ ≡ ∑N

k=1 pPk
xQk

, and for any two permutations P and Q it satisfies

pP · xQ = pPQ−1 · xI =
∑N

k=1 p
(PQ−1)k

xk where I is the trivial permutation.

The amplitude AP|Q
i1···iN is related to the probability of finding the particle with the flavor

ik (the ik-th particle in what follows) carrying the momentum p
(PQ−1)k

at the position xk.

That means that the index ik is attached to the coordinate xk. As a result the wave

function (C.1) should satisfy the following symmetry condition for any two indices k,m

ΨQ
i1···ik···im···iN (x1, . . . , xk, . . . , xm, . . . , xN ) =

= (−)ǫik
ǫim ΨPkmQ

i1···im···ik ···iN (x1, . . . , xm, . . . , xk, . . . , xN ) , (C.2)

where Pkm is the permutation of k and m, and ǫi = 0 if the i-th particle is boson and

ǫi = 1 if the i-th particle is fermion, that is one takes the minus sign if both the ik-th and

im-th particles are fermions, and the plus sign otherwise.

In any two domains Q and Q the amplitudes AP|Q
i1···iN and AP|Q

i1···iN of the same plane

wave (that is pP · xQ = pP · xQ) are related through the S-matrix. The relation can be

easily found by representing the amplitudes as the following products of the ZF operators

AP|Q
i1···iN ∼ ±A†

iQ1
(pP1

) · · ·A†
iQN

(pPN
) , (C.3)

and then by using the ZF algebra to relate the amplitudes in the domains Q and Q. The

+/− sign in this formula is related to the even/odd number of permutations of fermions by

the permutation Q. To understand the origin of this formula let us recall that the indices

ik are attached to the coordinates xk which explains the order of A†
iQk

. The dependence

of A†
iQk

of the momentum follows from the coupling pPk
xQk

in the exponential of the wave

function (C.1).

To proceed it is convenient to use matrix notations. We introduce the simple permuta-

tion P12 = Ei
j ⊗Ej

i which permutes the spaces V1 and V2 but does not touch the momenta

pi so that S21 = P12S(p2, p1)P12 , the graded permutation P g
12 = (−1)ǫiǫjEi

j ⊗ Ej
i , and the

graded two-particle S-matrix Sg
12 which can be written in the form Sg

12 = Ig
12S12 where

Ig
12 = (−1)ǫiǫjEi

i ⊗ Ej
j is the graded identity. We also define Sg

21 = P12S(p2, p1)P12I
g
12 =

P12S(p2, p1)P
g
12 so that the unitarity condition Sg

12S
g
21 = I is fulfilled.

Then we multiply the wave function (C.1) and (C.3) by the tensor product of N rows

Ei1 ⊗ Ei2 ⊗ · · · ⊗ EiN ≡
(
E1E2 · · ·EN

)i1i2···iN , and (C.1) takes the form

ΨQ(x1, . . . , xN ) =
∑

P
AP|Q ei pP ·xQ , (C.4)

where

AP|Q ∼ A†
Q1

(pP1
) · · ·A†

QN
(pPN

)Ig
Q ,

and the index Qk refers to the location of the row EQk , and Ig
Q is the product of graded

identities which can be found by representing the permutation Q as a product of Y simple

permutations Pkm: Q = Pk1m1 · · · PkY mY
, and then Ig

Q = Ig
k1m1

· · · Ig
kY mY

.
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Now the ZF algebra can be used to express the amplitudes AP|Q with Q0 ≡ P−1Q
fixed in terms of the amplitude AI|Q0. In particular the amplitudes AP|P are expressed in

terms of the incoming amplitude AI|I ∼ A†
1(p1) · · ·A†

N (pN ). The corresponding terms in

the wave function can be used to derive the periodicity conditions.

To find the relations, it is convenient to represent

AP|Q ∼ A†
Q1

(pP1
) · · ·A†

QN
(pPN

)Ig
Q = A†

P1
(pP1

) · · ·A†
PN

(pPN
)(QP−1)1···NIg

Q ,

AI|Q0 ∼ A†
1(p1) · · ·A†

N (pN ) · (Q0)1···NIg
Q0

= A†
1(p1) · · ·A†

N (pN )(P−1Q)1···NIg
Q0

, (C.5)

where (QP−1)1···N is the permutation matrix that acting on the tensor product EP1 ⊗· · ·⊗
EPN produces EQ1 ⊗ · · · ⊗ EQN . Now we use the ZF algebra to find the relation

AP|Q = A†
1 · · ·A

†
N · SP1···PN

(pP1
, . . . , pPN

)(QP−1)1···NIg
Q

= AI|Q0 Ig
Q0

(Q−1P)1···NSP1···PN
(pP1

, . . . , pPN
)(QP−1)1···NIg

Q ,

where SP1···PN
(pP1

, . . . , pPN
) is the multi-particle S-matrix.

In particular, we find that

AP|P = AI|I SP1···PN
(pP1

, . . . , pPN
)Ig

P ≡ AI|I Sg
P1···PN

(pP1
, . . . , pPN

) ,

where Sg
P1···PN

(pP1
, . . . , pPN

) is the graded multi-particle S-matrix. Note that it is not a

product of two-particle graded S-matrices.

This formula can be used to find the set of periodicity conditions. We write the part

of the wave function with the plane wave eipkxk

Ψ(x1, . . . , xN ) =
∑

P
AP|P ei pP ·xPθ(xP1 < . . . < xPN

)

= AI|I ∑

P
Sg
P1···PN

(pP1
, . . . , pPN

) ei pP ·xPθ(xP1 < . . . < xPN
) . (C.6)

The periodicity conditions read

Ψ(x1, . . . , xk = 0, . . . , xN ) = Ψ(x1, . . . , xk = L, . . . , xN )Wk ,

where the diagonal matrix W is equal to the identity matrix if the fermions are periodic,

and it is W = (−1)ǫiEi
i if the fermions are anti-periodic. For the su(2|2) case we have

W = Σ = diag(1, 1,−1,−1) for anti-periodic fermions.

By using eq. (C.6), we get

Ψ(x1, . . . , xk = 0, . . . , xN ) =

AI|I ∑

P:P1=pk

Sg
kP2···PN

(pk, pP2
, . . . , pPN

) ei pP ·xPθ(xP2 < . . . < xPN
) ,

Ψ(x1, . . . , xk = L, . . . , xN ) =

eipkLAI|I ∑

P:PN=pk

Sg
P1···PN−1k(pP1

, . . . , pPN−1
, pk)Wk ei pP ·xPθ(xP1 < . . . < xPN−1

) ,
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Comparing the terms, we obtain

AI|I
(
Sg

kP2···PN
(pk, pP2

, . . . , pPN
) − eipkLSg

P2···PN k(pP2
, . . . , pPN

, pk)Wk

)
= 0 . (C.7)

To compute the S-matrices, we use their definitions

A†
k(pk)A

†
P2

(pP2
) · · ·A†

PN
(pPN

) = A†
1 · · ·A

†
N · SkP2···PN

(pk, pP2
, . . . , pPN

) ,

A†
P2

(pP2
) · · ·A†

PN
(pPN

)A†
k(pk) = A†

1 · · ·A
†
N · SP2···PN k(pP2

, . . . , pPN
, pk) .

Then we use the ZF algebra to order the product A†
P2

(pP2
) · · ·A†

PN
(pPN

)

A†
P2

(pP2
) · · ·A†

PN
(pPN

) = A†
1 · · ·A

†
k−1A

†
k+1 · · ·A

†
N · SP2···PN

(pP2
, . . . , pPN

) ,

and finally we get the multi-particle S-matrices

A†
kA

†
P2

(pP2
) · · ·A†

PN
(pPN

) = A†
1 · · ·A

†
N · Sk,k−1Sk,k−2 · · ·Sk1 · SP2···PN

A†
P2

(pP2
) · · ·A†

PN
(pPN

)A†
k = A†

1 · · ·A
†
N · Sk+1,kSk+2,k · · ·SNk · SP2···PN

.

Thus, for SP2···PN
= 1 eq. (C.7) takes the form

AI|I
(
Sk,k−1 · · ·Sk1I

g
k,k−1 · · · I

g
k1 − eipkLSk+1,k · · ·SNkI

g
k+1,k · · · I

g
NkWk

)
= 0 (C.8)

or, equivalently,

AI|I
(
eipkL − Sk,k−1 · · ·Sk1I

g
k,k−1 · · · I

g
k1WkI

g
kN · · · Ig

k,k+1SkN · · ·Sk,k+1

)
= 0 . (C.9)

It is possible to show that the same equations follow if SP2···PN
6= 1 which uses the identity

SkmIg
knIg

mn = Ig
knIg

mnSkm, and also that the terms in the wave function with the plane

wave ei pP ·xQ lead to the same equations.

The consistency condition for the system of equations (C.9) requires that the matrices

Tk ≡ Sk,k−1 · · ·Sk1I
g
k,k−1 · · · I

g
k1WkI

g
kN · · · Ig

k,k+1SkN · · ·Sk,k+1

mutually commute. Naturally, we expect that the matrices Tk should be related to the

monodromy matrix

T (pA) = −StrA WASf
AN (pA, pN )Sf

A,N−1(pA, pN−1) · · ·Sf
A1(pA, p1) , (C.10)

where Sf
jk is the fermionic R-operator defined, e.g., in eq. (102) of [73]. The authors of [73]

use index notations to define the operator. It is more convenient, however, to use the

matrix notations and the usual convention for Sjk to work with the operator. One can

check that it can be written in the following form

Sf
jk(pj , pk) =

{
Ig
j···NIg

k···N Ig
jkSjk(pj, pk) Ig

j···NIg
k···N if j < k ;

Ig
j···NIg

k···N Sjk(pj, pk)I
g
jk Ig

j···NIg
k···N if j > k .

(C.11)

Here Ig
jk is the graded identity and

Ig
j···N ≡ Ig

j,j+1I
g
j,j+2 · · · I

g
jN .
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To prove the formula, one should use the following representation for the graded projection

operators Ẽβ
jα eq. (28) of [73]

Ẽβ
jα = Ig

j···N Eβ
jα Ig

j···N .

There are two natural choice for the index A in (C.10), that is A = 0 or A = N + 1. The

choice leading to Tk appears to be A = N + 1 > k. Then we get

Sf
Ak(pA, pk) = Ig

k···N SAk(pA, pk)I
g
Ak Ig

k···N .

Now we compute the following product

Sf
Ak(pA, pk)S

f
A,k−1(pA, pk−1) = Ig

k···NSAk Ig
Ak Ig

k···NIg
k−1···N SA,k−1 Ig

A,k−1 Ig
k−1···N (C.12)

= Ig
k···NIg

k−1···NIg
k−1,k SAk Ig

AkI
g
k−1,kSA,k−1 Ig

A,k−1 Ig
k···N Ig

k−1···N
= Ig

k···NIg
k−1···NIg

k−1,k SAkSA,k−1 Ig
Ak Ig

A,k−1 Ig
k−1,k Ig

k···N Ig
k−1···N ,

where we used the identity

SA,k−1(pA, pk) Ig
k−1,k Ig

Ak = Ig
k−1,k Ig

Ak SA,k−1(pA, pk) .

The following generalization of the formula (C.12) can be proven by using the mathematical

induction

Sf
Ak(pA, pk)S

f
A,k−1(pA, pk−1) · · ·Sf

A,k−n(pA, pk−n) =

= Ig
k···N · · · Ig

k−n···N Ig
k−1,kI

g
k−2···k · · · I

g
k−n···k × (C.13)

× SAk · · ·SA,k−n Ig
Ak · · · I

g
A,k−n Ig

k···N · · · Ig
k−n···N Ig

k−1,kI
g
k−2···k · · · I

g
k−n···k .

To get the monodromy matrix, we set k = N and n = N − 1 in this formula, and using

the identity

Ig
N−1···N · · · Ig

1···N Ig
N−1,NIg

N−2···N · · · Ig
1···N = I ,

we find the following drastic simplification

T (pA) = −StrA WA SAN · · ·SA1 Ig
AN · · · Ig

A1 .

Now we choose pA = pk and use the fact that SAk(pk, pk) = −PAk. Recalling that our goal

is to show that T (pk) = Tk, we have

T (pk) = StrA WA SAN · · ·SA,k+1 PAk SA,k−1 · · ·SA1 Ig
AN · · · Ig

A1

= StrA PAk Wk SkN · · ·Sk,k+1 · SA,k−1 · · ·SA1 Ig
AN · · · Ig

A1

= StrA PAk SA,k−1 · · ·SA1 Ig
A,k−1 · · · I

g
A1 · Wk SkN · · ·Sk,k+1 · Ig

AN · · · Ig
Ak .

Now we use that

SkN · · ·Sk,k+1 · Ig
AN · · · Ig

Ak = Ig
AN · · · Ig

Ak · SkN · · ·Sk,k+1
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to get

T (pk) = StrA Sk,k−1 · · ·Sk1 Ig
k,k−1 · · · I

g
k1I

g
kN · · · Ig

k,k+1 PAkI
g
Ak Wk SkN · · ·Sk,k+1 .

The supertrace can be easily taken

StrA PAkI
g
Ak = Tr2 ((−1)ǫcI ⊗ Ec

c)
(
Ea

b ⊗ Eb
a

)(
(−1)ǫf ǫgEf

f ⊗ Eg
g

)

= (−1)ǫa+ǫ2aEa
a = I ,

and, therefore, we show that T (pk) = Tk. Since T (u)T (v) = T (v)T (u) for any u and v, we

have shown that the periodicity equations (C.9) are consistent.24

C.2 Two-particle Bethe equations

To see how the formulas of the previous subsection work let us consider a two-particle wave

function given by

Ψij(x1, x2) =

{
A12|12

ij ei p1x1+i p2x2 + A21|12
ij ei p2x1+i p1x2 if x1 < x2

A12|21
ij ei p1x2+i p2x1 + A21|21

ij ei p2x2+i p1x1 if x2 < x1

. (C.14)

According to (C.3), we can identify

A12|12
ij ∼ A†

i (p1)A
†
j(p2) , A21|21

ij ∼ (−)ǫiǫjA†
j(p2)A

†
i (p1) .

It is clear that the amplitudes A12|12
ij and A21|21

ij correspond to the in- and out-states,

respectively. By using the ZF algebra we find

A†
j(p2)A

†
i (p1) = Slk

ji (p2, p1)A
†
k(p1)A

†
l (p2) ⇒ A21|21

ij = (−)ǫiǫjSlk
ji (p2, p1)A12|12

kl .

In a similar way we get

A21|12
ij ∼ A†

i (p2)A
†
j(p1) , A12|21

ij ∼ (−)ǫiǫjA†
j(p1)A

†
i (p2) ,

and

A†
j(p1)A

†
i (p2) = Slk

ji (p1, p2)A
†
k(p2)A

†
l (p1) ⇒ A12|21

ij = (−)ǫiǫjSlk
ji (p1, p2)A21|12

kl .

The amplitudes A12|12
ij and A21|12

ij are not independent. By the symmetry condition (C.2)

they are related to each other as follows

A12|12
ij = (−)ǫiǫjA12|21

ji = Slk
ij (p1, p2)A21|12

kl ⇒ A21|12
ij = Slk

ij (p2, p1)A12|12
kl .

The wave function (C.14) can be written in the matrix form by multiplying it by the row

Ei ⊗ Ej and summing over i, j. Then we get

Ψ(x1, x2) =

{
A

(
ei p1x1+i p2x2 + S21P12 ei p2x1+i p1x2

)
if x1 < x2

A
(
P g

12e
i p1x2+i p2x1 + Sg

21 ei p2x2+i p1x1
)

if x2 < x1
, (C.15)

24In framework of the algebraic Bethe Ansatz twisted boundary conditions for Hubbard-like models have

been studied in [63].
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where we recall that P g
12 = (−1)ǫiǫjEi

j⊗Ej
i is the graded permutation and Sg

21 is the graded

S-matrix Sg
21 = P12S(p2, p1)P12I

g
12 = P12S(p2, p1)P

g
12.

The (quasi)-periodicity condition can be easily imposed

Ψ(x1, x2) = Ψ(x1 + L, x2)W1 , Ψ(x1, x2) = Ψ(x1, x2 − L)W2 , x1 < x2 ,

where the matrix W is equal to I for periodic boundary conditions and to Σ for anti-

periodic boundary conditions for fermions. By using the wave eipkxk this leads to the

following equations

A
(
1 − eip1LSg

21W1

)
= 0 , A

(
1 − e−ip2LSg

21W2

)
= 0 ,

or by using the wave eip2x2+ip1x2 to

A
(
S21P12 − eip2LP g

12W1

)
= 0 , A

(
S21P12 − e−ip1LP g

12W2

)
= 0 .

These two sets of the periodicity conditions are obviously equivalent because P g
12W1 =

W2P
g
12. Let us also mention that the equations are compatible if the matrices W1S

g
12 and

Sg
21W2 commute, and this follows from unitarity Sg

12S
g
21 = I and

W1W2S
g
12 = Sg

12W1W2 .

Let us now see how the nesting procedure works for the case of one A†
1 boson and one

A†
3 fermion. Consider the system of equations

A21|12
13 = S13

13(p2, p1)A12|12
31 + S31

13(p2, p1)A12|12
13 ,

A21|12
31 = S13

31(p2, p1)A12|12
31 + S31

31(p2, p1)A12|12
13 .

(C.16)

Assuming that Skl
ij are matrix elements of the string S-matrix S, we get

A21|12
13 = S0(p2, p1)

[
x−

1 − x−
2

x+
1 − x−

2

e
i
2
p1A12|12

31 − x+
1 − x−

1

x+
1 − x−

2

η(p2)

η(p1)

e
i
2
p1

e
i
2
p2
A12|12

13

]
,

A21|12
31 = S0(p2, p1)

[
x+

2 − x−
2

x−
2 − x+

1

η(p1)

η(p2)
A12|12

31 +
x+

2 − x+
1

x−
2 − x+

1

e−
i
2
p2A12|12

13

]
,

(C.17)

where S0(p1, p2) is the scalar prefactor.

For the amplitudes of interest the general Bethe equations

e−ip1LA12|12
ij = (−1)ǫǫi+ǫiǫjSlk

ji (p2, p1)A12|12
kl (C.18)

read as follows

e−ip1LA12|12
13 = S13

31(p2, p1)A12|12
31 + S31

31(p2, p1)A12|12
13 = A21|12

31 ,

e−ip1LA12|12
31 = (−1)ǫ

[
S13

13(p2, p1)A12|12
31 + S31

13(p2, p1)A12|12
13

]
= (−1)ǫA21|12

13 ,
(C.19)

where we have used eqs. (C.16). Note that in eq. (C.18) the multiplier (−1)ǫǫi takes into

account the boundary conditions for fermions: ǫ = 0 for periodic fermions and ǫ = 1 for

anti-periodic ones, respectively.

The system (C.17) can be solved in two different ways depending on the choice of the

first level vacuum [9]. Below we present both solutions.
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• Regarding A1 . . . A1 as the first level vacuum, we first choose the following ansatz

A12|12
13 = f(p2)S(p1) , A12|12

31 = f(p1) ,

A21|12
13 = S11

11(p2, p1)f(p1)S(p2) , A21|12
31 = S11

11(p2, p1)f(p2) ,
(C.20)

where S11
11(p1, p2) is the corresponding element of the string S-matrix. One can easily

show that this ansatz indeed solves the system (C.17) provided we take

f(p) =
ei p

2

η(p)

x+ − x−

y − x− , S(p) = ei p
2
y − x−

y − x+
.

According to eqs. (C.20), the last formulae give

e−ip1Lf(p2)S(p1) = S11
11 (p2, p1)f(p2) ,

e−ip1Lf(p1) = (−1)ǫS11
11 (p2, p1)f(p1)S(p2)

and we derive the corresponding Bethe equations

eip1L = S11
11(p1, p2)S(p1) ,

(−1)ǫ = S(p1)S(p2) .

• If we choose A3 . . . A3 as the first level vacuum, we modify the ansatz for the corre-

sponding amplitudes as follows

A12|12
13 = f(p1) , A12|12

31 = f(p2)S(p1) .

A21|12
13 = S33

33(p2, p1)f(p2) , A21|12
31 = S33

33(p2, p1)f(p1)S(p2) .
(C.21)

Note that S33
33(p1, p2) = −S0(p1, p2). This time satisfaction of eqs. (C.17) requires

one to choose

f(p) = η(p)e−i p
2

y

y − x− , S(p) = −e−i p
2
y − x+

y − x− .

The Bethe equations (C.19) read

e−ip1Lf(p1) = S33
33(p2, p1)f(p1)S(p2) ,

e−ip1Lf(p2)S(p1) = (−1)ǫS33
33(p2, p1)f(p2) ,

and, therefore, we find

eip1L = (−1)ǫS33
33(p1, p2)S(p1) ≡ (−1)ǫS0(p1, p2)

x+
1 − y

x−
1 − y

e−i
p1
2 ,

(−1)ǫ = S(p1)S(p2) .

This completes consideration of our simple example illustrating the dependence of the

Bethe equations on the periodicity conditions for fermions.
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D. Large/small g expansions of solutions to the bound state equation

The four general solutions of the bound state equation (7.8) are

eq =

(√
g2 sin2 p

2 + 1 + 1
) (

cos p
2

√
g2 sin2 p

2 + 1 ±
√

cos2 p
2 − g2 sin4 p

2

)

g2 sin2 p
2

, (D.1)

eq =

(√
g2 sin2 p

2 + 1 − 1
) (

cos p
2

√
g2 sin2 p

2 + 1 ±
√

cos2 p
2 − g2 sin4 p

2

)

g2 sin2 p
2

, (D.2)

where only the first two solutions (D.1) correspond to states with positive energy.

The large g dependence of q of the bound state solutions with momentum exceeding

pcr is obtained by expanding (D.1) in powers of 1/g with the bound state momentum p

kept fixed25

q± =
1

g sin p
2

− 1

6g3 sin3 p
2

± i

(
p

2
− cos p

2

2g2 sin3 p
2

)
+ O(

1

g4
) . (D.3)

To find the large g dependence of q of the bound state solutions with momentum

smaller than pcr one should take into account that pcr → 2/
√

g as g → ∞, and therefore

one should consider a bound state with momentum p of the order 1/
√

g and keep the

product p
√

g fixed in the large g expansion

q± = 2
1 ±

√
1 − p4g2

16

gp
− 4

3g3p3


1 − p4g2

16
± 1√

1 − p4g2

16


 . (D.4)

The small g dependence of q of the bound state solutions with momentum smaller than

pcr is obtained by expanding (D.1) at small g with the bound state momentum p kept fixed

q+ = −2 log g + log
4 cos p

2

sin2 p
2

+
g2

8
(1 + 3 cos p) tan2 p

2
+ O(g4) , (D.5)

q− = − log cos
p

2
+

g2

4
sin2 p

2
tan2 p

2
+ O(g4) . (D.6)

To find the small g dependence of q of the bound state solutions with the momentum

exceeding pcr, one should take into account that pcr → π − 2g as g → 0. Then, one can

parametrize p as follows

p = π − 2g cos α ,

and keep α fixed in the expansion. Then we get

q± = − log
g

2
+

g2

4
(2 + cos 2α) ± i

(
α +

g2

6
sin 2α − 5g2

6
cot α

)
+ O(g4) . (D.7)

25We assume here that p ∈ (0, π).
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